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Take your telephone or computer – and go here!
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PollEv.com/rasmuspaulse538

Just skip the registration
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Complex geometries – left ventricular blood pool
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http://www.vhlab.umn.edu/atlas/comparative-anatomy-tutorial/ventricles.shtml

Blood pool from 
cardiac CT scan

Cut through left 
ventricle
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Statistics on complex shapes

• Research questions:
– How to parameterize complex geometries
– How do we make meaningful statistical 

distributions of these shapes?
– How do we test if a given patient is closer to 

one distribution or another?
– How to compute risk scores using shapes?
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Heart structures: Myocardium and left ventricle
• The shape and appearance of the heart muscle (myocardium) 

is a known predictor for cardiac death
• Not trivial to define the borders between

– Heart muscle
– Left ventricular blood volume
– Trabeculation
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The shape of the left atrial appendage and stroke risk
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Higher stroke risk

Lower stroke riskMore than 90% of thrombus accumulation occurs in the left 
atrial appendage (LAA) (for atrial fibrillation related strokes)
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Stroke prevention
• It is possible to reduce the stroke risk

– medicine (anticoagulants) or surgery (left atrial appendage closure)

• Is it possible to identify patients at risk?
• Is it possible to optimise the surgical intervention?

13
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Statistics on complex biological shapes

• Research questions
– How to parameterise complex 3D shapes to be able 

to do machine learning?
– How to map complex 3D shapes to low-dimensional 

spaces (latent spaces)
– How to compute meaningful distances in latent 

spaces
– Supervised and unsupervised clustering and 

classification of complex 3D shapes
– Prediction based on 3D shapes:

• Risk scores
– Risk of stroke based on your LAA shape

• Device selection and deployment strategies
• Procedural outcome prediction

14

Shape space – latent space
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How does a CT scan look like?

• A 3D volume consisting of small cubes (voxels)
• The value in each voxel reflects the amount of 

X-ray radiation that is absorbed
– Bone: A lot of absorption (bright voxels)
– Soft-tissue: Medium absorption (grey voxels)
– Air: Low absorption (dark voxels) 

• Contrast enhanced CT-scan
– A liquid is injected just before the CT scan
– The liquid makes blood light up on the CT 

scan
– Blood pools, arteries and veins become 

clearly visible

15

Sometimes it is enough to model the 
anatomical boundaries – blood pools or 
bones for example
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What do I want?

• What would I like (this is not a standard list of 
requirements)

– Information preserving: does not remove 
or filter geometric information

– Compact: Uses a minimum of parameters
– Consistent: There should not be (too many) 

ways the same surface can be represented 
by the parameterization

– Rotationally invariant: The 
parameterisation is invariant to rotations.

– Can represent all topologies: Works with 
non-manifolds, open surfaces and holes

– Can be used in ML frameworks: It should 
be possible to feed the representation into a 
deep learning framework

16



DTU ComputeAugust 2024 AI driven surface  analysis

What about surface meshes?
• Meshes:

– Information preserving: does not remove 
or filter geometric information

– Compact: Uses a minimum of parameters
– Consistent: There should not be (too many) 

ways the same surface can be represented 
by the parameterization

– Rotationally invariant: The 
parameterisation is invariant to rotations.

– Can represent all topologies: Works with 
non-manifolds, open surfaces and holes

– Can be used in ML frameworks: It should 
be possible to feed the representation into a 
deep learning framework

17
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Deep learning directly on 3D meshes

18

Prediction of intersection between the left atrium and the left atrial appendage in the human 
heart. For simulation of surgical device insertion.
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Implicit shape descriptions
• Implicit shape description
• Carries information about the shape in the entire 

field
• In the simplest version it is just a 3D voxel grid

– A distance field

19

Intersection between image analysis and computer 
graphics
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Signed distance fields?
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• Signed distance fields:

– Information preserving: does not remove 
or filter geometric information

– Compact: Uses a minimum of parameters
– Consistent: There should not be (too many) 

ways the same surface can be represented 
by the parameterization

– Rotationally invariant: The 
parameterisation is invariant to rotations.

– Can represent all topologies: Works with 
non-manifolds, open surfaces and holes

– Can be used in ML frameworks: It should 
be possible to feed the representation into a 
deep learning framework
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Unsigned distance fields?
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• Unsigned distance fields:

– Information preserving: does not remove 
or filter geometric information

– Compact: Uses a minimum of parameters
– Consistent: There should not be (too many) 

ways the same surface can be represented 
by the parameterization

– Rotationally invariant: The 
parameterisation is invariant to rotations.

– Can represent all topologies: Works with 
non-manifolds, open surfaces and holes

– Can be used in ML frameworks: It should 
be possible to feed the representation into a 
deep learning framework
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Implicit Neural Distance representations

22

MICCAI 2021
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Distance fields

23

Signed distance fields
+ Easy surface extraction at zero-level isosurface
+ Differentiable at all points
- Surface must be closed

Unsigned distance fields
+ Can represent arbitrary topologies
- Undifferentiable near surface
- More advanced methods needed for surface extraction
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Distance fields and deep learning
Single shape representation
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𝑓𝑓 𝒑𝒑 ↦ 𝑠𝑠, 𝒑𝒑 ∈ ℝ3, 𝑠𝑠 ∈ ℝ

Park et.al., “DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation ”, CVPR2019

Predicts a signed distance to a surface given a position
No need for a voxel grid
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Deep signed distance field?

25

• Unsigned distance fields:

– Information preserving: does not remove 
or filter geometric information

– Compact: Uses a minimum of parameters
– Consistent: There should not be (too many) 

ways the same surface can be represented 
by the parameterization

– Rotationally invariant: The 
parameterisation is invariant to rotations.

– Can represent all topologies: Works with 
non-manifolds, open surfaces and holes

– Can be used in ML frameworks: It should 
be possible to feed the representation into a 
deep learning framework
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Distance fields and deep learning
Single shape representation
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𝑓𝑓 𝒑𝒑 ↦ 𝑠𝑠, 𝒑𝒑 ∈ ℝ3, 𝑠𝑠 ∈ ℝ

Park et.al., “DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation ”, CVPR2019

Predicts a signed distance to a surface given a position
No need for a voxel grid

What about more shapes?
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Distance fields and deep learning
Multi shape representation

𝑓𝑓 𝒑𝒑 ↦ 𝑠𝑠, 𝒑𝒑 ∈ ℝ3, 𝑠𝑠 ∈ ℝ

Park et.al., “DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation ”, CVPR2019
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Auto-decoders
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Auto-encoder Auto-decoder
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Distance fields and deep learning
Multi shape representation - training

arg min
𝜃𝜃, 𝒛𝒛𝑖𝑖

𝑁𝑁
𝑖𝑖=1

�
𝑖𝑖=1

𝑁𝑁

�
𝑗𝑗=1

𝐾𝐾

ℒ(𝑓𝑓𝜃𝜃(𝒛𝒛𝑖𝑖 ,𝒑𝒑𝑗𝑗) , 𝑠𝑠𝑗𝑗) +
1
𝜎𝜎2

𝒛𝒛𝑖𝑖 2
2

𝑋𝑋𝑖𝑖 = 𝒑𝒑𝑗𝑗 , 𝑠𝑠𝑗𝑗 : 𝑠𝑠𝑗𝑗 = 𝐷𝐷𝐹𝐹𝑖𝑖 𝒑𝒑𝑗𝑗
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Distance fields and deep learning
Multi shape representation - training

• Training:

𝑋𝑋𝑖𝑖 = 𝒑𝒑𝑗𝑗 , 𝑠𝑠𝑗𝑗 : 𝑠𝑠𝑗𝑗 = 𝐷𝐷𝐹𝐹𝑖𝑖 𝒑𝒑𝑗𝑗
arg min
𝜃𝜃, 𝒛𝒛𝑖𝑖
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ℒ(𝑓𝑓𝜃𝜃(𝒛𝒛𝑖𝑖 ,𝒑𝒑𝑗𝑗) , 𝑠𝑠𝑗𝑗) +
1
𝜎𝜎2

𝒛𝒛𝑖𝑖 2
2

Clamped L1-distance

Regularization
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Distance fields and deep learning
Multi shape representation – testing with unseen shapes

• Testing with unseen examples:

𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝒑𝒑𝑗𝑗 , 𝑠𝑠𝑗𝑗 : 𝑠𝑠𝑗𝑗 = 𝐷𝐷𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝒑𝒑𝑗𝑗
�𝒛𝒛 = arg min

𝒛𝒛
�

(𝒙𝒙𝑗𝑗, 𝑡𝑡𝑗𝑗)∈𝑋𝑋

𝑁𝑁

ℒ(𝑓𝑓𝜃𝜃 𝒛𝒛𝑖𝑖 ,𝒑𝒑𝑗𝑗 , 𝑠𝑠𝑗𝑗) +
1
𝜎𝜎2

𝒛𝒛𝑖𝑖 2
2

Input samples
Optimal latent 

vector
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+

Grid of point-coordinatesInput samples
Optimal latent 

vector Reconstructed distance field

Distance fields and deep learning
Multi shape representation – testing with unseen shapes
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Distance fields and deep learning
Multi shape representation

• Decoder architecture: 
– Deep Feed Forward network with 8 layers
– Latent vector and coordinates are 

reintroduces at the 4th layer
– Latent space size: 64/128
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+

Grid of point-coordinatesInput samples
Optimal latent 

vector Reconstructed distance field

Experiments with neural unsigned distance functions
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Data

35

LA
- 106 surfaces
- Topology: spheres

EARS
- 571 ears (259/312 left/right)
- Topology: Tubes

ESOF
- 394 faces 

(192/202 male/female, 0-84 years)
- Topology: Planes
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Data
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LA
- 106 surfaces
- Topology: spheres

EARS
- 571 ears (259/312 left/right)
- Topology: Tubes

ESOF
- 394 faces 

(192/202 male/female, 0-84 years)
- Topology: Planes
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Data
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LA
- 106 surfaces
- Topology: spheres

EARS
- 571 ears (259/312 left/right)
- Topology: Tubes

ESOF
- 394 faces 

(192/202 male/female, 0-84 years)
- Topology: Planes
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Experiment 1: Reconstructing complex anatomies

38

Train: 

Test:

Recon.

Recon.

Input

Input
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Experiment 1: Unsupervised clustering

• 128 dim. latent space

39
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Experiment 1: Unsupervised clustering

• K-means with 3 clusters

– Dataset accuracy: 99.23%

40
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Experiment 1: Unsupervised clustering

• K-means with 4 clusters

– Dataset accuracy: 100%

– EARS left/right accuracy: 100%

41
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Summary – neural (un)signed distance functions

• Neural unsigned distance functions can represent complex anatomies with arbitrary topologies.

• The self-optimized latent space holds important global shape information and can be used to 
classify complex anatomies.

42
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Cardiac movement
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Left atrium

Left ventricle

K. Sørensen et al. Spatio-temporal neural distance fields for conditional 
generative modeling of the heart. MICCAI 2024
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Temporal CT scans
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R R R R

…

t=0%

t=95%

t=5%

K. Sørensen et al. Spatio-temporal neural distance fields for conditional 
generative modeling of the heart. MICCAI 2024
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Neural Distance fields

• Signed distance field (SDF)

• Surface as the zero-level isosurface

• How do we approximate the SDF for a 
set of N shapes?

45

𝑓𝑓𝜃𝜃 𝒑𝒑 ↦ 𝑑𝑑, 𝒑𝒑 ∈ ℝ3,𝑑𝑑 ∈ ℝ

𝑆𝑆 = {𝒑𝒑 ∈ ℝ3|𝑓𝑓𝜃𝜃(𝒑𝒑) = 0}

𝒑𝒑𝑘𝑘 𝑑𝑑𝑘𝑘𝑓𝑓𝜃𝜃

Neural network

𝒛𝒛𝑛𝑛arg min
𝜃𝜃, 𝒛𝒛𝑛𝑛
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ℒ(𝑓𝑓𝜃𝜃 𝒛𝒛𝑛𝑛⨂ 𝒑𝒑𝑛𝑛,𝑘𝑘 ,𝑑𝑑𝑛𝑛,𝑘𝑘) +
1
𝜎𝜎2

𝒛𝒛𝑛𝑛 2
2

pk

d(pk)

K. Sørensen et al. Spatio-temporal neural distance fields for conditional 
generative modeling of the heart. MICCAI 2024
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Temporal Neural Distance fields

• Signed distance field (SDF)

• Surface as the zero-level isosurface

• How do we approximate the SDF for a set 
of N temporal sequences?

46

𝑓𝑓𝜃𝜃 𝒑𝒑 ↦ 𝑑𝑑, 𝒑𝒑 ∈ ℝ3,𝑑𝑑 ∈ ℝ

arg min
𝜃𝜃, 𝒛𝒛𝑛𝑛
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ℒ(𝑓𝑓𝜃𝜃 𝒛𝒛𝑛𝑛⨂( 𝒑𝒑𝑛𝑛,𝑘𝑘 , 𝑡𝑡𝑛𝑛,𝑘𝑘) ,𝑑𝑑𝑛𝑛,𝑘𝑘,𝑡𝑡) +
1
𝜎𝜎2
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2

𝑆𝑆 = {𝒑𝒑 ∈ ℝ3|𝑓𝑓𝜃𝜃(𝒑𝒑) = 0}

𝑑𝑑𝑘𝑘,𝑡𝑡𝑓𝑓𝜃𝜃

Neural network

𝒛𝒛𝑛𝑛

(𝒑𝒑𝑘𝑘 , 𝑡𝑡𝑘𝑘 )

K. Sørensen et al. Spatio-temporal neural distance fields for conditional 
generative modeling of the heart. MICCAI 2024
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Temporal Sequence completion

47

Normal

AbnormalK. Sørensen et al. Spatio-temporal neural distance fields for conditional 
generative modeling of the heart. MICCAI 2024
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Summary

• It is important to choose a representation that represents your data as well as possible
– Geometry / topology / level of details

• You should be aware of the limitations of the representation
– Rotational invariance

• What type of operations can you do with the representations
– Statistical measures
– Convolutions
– Pooling

• Neural representations like neural distance fields is a major research focus
– Come with both benefits and weaknesses

48
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