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Take your telephone or computer — and go here!
PollEv.com/rasmuspaulse538

Just skip the registration
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What do we see in this photo?

Left atrial appendage and its muscles?

The lower part of the stomach?

The left ventricle with trabeculation?

The aortic arch?

»3

The left kidney?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

August 2024 DTU Compute Al driven surface analysis
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What do we see in this photo?

Left atrial appendage and its muscles?
20%

The lower part of the stomach?
6%

The left ventricle with trabeculation?
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The aortic arch?
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The left kidney?
6%

-. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..
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What do we see in this photo?

Left atrial appendage and its muscles?
20%

The lower part of the stomach?

[ | 6%

The left ventricle with trabeculation?

G

The aortic arch?

— 0%

The left kidney?
6%

-. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..
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Complex geometries — left ventricular blood pool
P

o

Blood pool from Cut through left
cardiac CT scan ventricle

http://www.vhlab.umn.edu/atlas/comparative-anatomy-tutorial/ventricles.shtml

August 2024 DTU Compute Al driven surface analysis
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Statistics on complex shapes

August 2024

DTU Compute
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* Research questions:
— How to parameterize complex geometries

— How do we make meaningful statistical
distributions of these shapes?

— How do we test if a given patient is closer to
one distribution or another?

— How to compute risk scores using shapes?

34.1%| 34.1%

u—-30 P—20 u-O WU u+0  u+20 p+30

Al driven surface analysis
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Heart structures: Myocardium and left ventricle

{ o:.a" , PN

« The shape and appearance of the heart muscle (myocardium)
is a known predictor for cardiac death

* Not trivial to define the borders between
— Heart muscle
— Left ventricular blood volume
— Trabeculation

The left ventricle

Compacted mass
Diastolic | [] Trabeculated mass
volume [T Free volume

Left ventricular trabeculation and major
adverse cardiovascular events: the Copenhagen
General Population Study

Per E. Sigvardsen © 2, Andreas Fuchs', Jergen T. Kiihl', Shoaib Afzal??,
Lars Keber'?, Borge G. Nordestgaard ® >, and Klaus F. Kofoed ® %

August 2024 DTU Compute
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What is the most similar shape to this left atrial appendage (LAA)

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..
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What is the most similar shape to this left atrial appendage (LAA)

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..
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What is the most similar shape to this left atrial appendage (LAA)

26%

19%

5%

-. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..
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The shape of the left atrial appendage and stroke risk

ATRIAL FIBRILLATION PATIENT
LEFT ATRIAL APPENDAGE

BLOOD CLOT CAUSING STROKE

Higher stroke risk

More than 90% of thrombus accumulation occurs in the left
atrial appendage (LAA) (for atrial fibrillation related strokes)

August 2024
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Stroke prevention

* It is possible to reduce the stroke risk
— medicine (anticoagulants) or surgery (left atrial appendage closure)

* Is it possible to identify patients at risk?
* Is it possible to optimise the surgical intervention?

August 2024
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Statistics on complex biological shapes

August 2024

Shape space — latent space

 Research questions

— How to parameterise complex 3D shapes to be able
to do machine learning?

— How to map complex 3D shapes to low-dimensional
spaces (latent spaces)

— How to compute meaningful distances in latent
spaces

— Supervised and unsupervised clustering and
classification of complex 3D shapes

— Prediction based on 3D shapes:
» Risk scores
— Risk of stroke based on your LAA shape
* Device selection and deployment strategies
* Procedural outcome prediction



How does a CT scan look like?

« A 3D volume consisting of small cubes (voxels)

 The value in each voxel reflects the amount of
X-ray radiation that is absorbed

— Bone: A lot of absorption (bright voxels)
— Soft-fissue: Medium absorption (grey voxels)
Sometimes it is enough to model the tion (dark voxels)

anatomical boundaries — blood pools or
bones for example 2d CT-scan

=rAmqurats pected just before the CT scan

— The liquid makes blood light up on the CT
scan

— Blood pools, arteries and veins become
clearly visible

B: CFA-2_0042_SERIES0006!

August 2024 DTU Compute

Al driven surface analysis
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What do | want?

« What would | like (this is not a standard list of
requirements)

— Information preserving: does not remove
or filter geometric information

— Compact: Uses a minimum of parameters

— Consistent: There should not be (too many)
ways the same surface can be represented
by the parameterization

— Rotationally invariant: The
parameterisation is invariant to rotations.

— Can represent all topologies: Works with
non-manifolds, open surfaces and holes

— Can be used in ML frameworks: It should
be possible to feed the representation into a
deep learning framework

August 2024 DTU Compute Al driven surface analysis
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What about surface meshes?

 Meshes:

— Information preserving: does not remove
or filter geometric information

— Compact: Uses a minimum of parameters

— Consistent: There should not be (too many)
ways the same surface can be represented
by the parameterization

The
parameterisation is invariant to rotations.

: Works with
non-manifolds, open surfaces and holes

It should
be possible to feed the representation into a
deep learning framework

August 2024 DTU Compute Al driven surface analysis
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Deep learning directly on 3D meshes

SparseMeshCNN with Self-Attention for Segmentation of Large
Meshes
Bjgrn Hansen*!, Mathias Lowes®!, Thomas (rkild!, Anders Dahl', Vedrana Dahl!, Ole

de Backer?, Oscar Camara®, Rasmus Paulsen', Christian Ingwersen!'!, and Kristine
Sgrensent!

'Department of Applied Mathematics and Computer Science, Technical University of
Denmark, Kgs. Lynghy, Denmark
2The Heart Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
BCN MedTech, Universitat Pompeu Fabra, Barcelona, Spain
"Trackman A/S, Vedback, Denmark

WATCHMAN

Amplatzer™ Amulet™

Prediction of intersection between the left atrium and the left atrial appendage in the human
heart. For simulation of surgical device insertion.

August 2024 DTU Compute Al driven surface analysis
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Implicit shape descriptions

 Implicit shape description

» Carries information about the shape in the entire
field

* In the simplest version it is just a 3D voxel grid
— A distance field

3l Az 113.5361mm = ¥ & O

Intersection between image analysis and computer
graphics

Neural Representation of Open Surfaces

Christiansen, T. V., Brentzen, ). A., Paulsen, R. R. & Hannemose, M. R., 2023, (Accepted/In press) In: Computer Graphics
Forum. 13 p., el4916.

August 2024 DTU Compute Al driven surface analysis
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Signhed distance fields?

+ Signed distance fields:

does not remove
or filter geometric information

Uses a minimum of parameters

— Consistent: There should not be (too many)
ways the same surface can be represented
by the parameterization

— Rotationally invariant: The
parameterisation is invariant to rotations.

— Can represent all topologies: Works with
non-manifolds, open surfaces and holes

— Can be used in ML frameworks: It should
be possible to feed the representation into a
deep learning framework

i'A: 113.5361mm = Y @ 5 = ] R: -5.4639m

August 2024 DTU Compute Al driven surface analysis
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Unsigned distance fields?

« Unsigned distance fields:

does not remove
or filter geometric information

Uses a minimum of parameters

— Consistent: There should not be (too many)
ways the same surface can be represented
by the parameterization

— Rotationally invariant: The
parameterisation is invariant to rotations.

— Can represent all topologies: Works with
non-manifolds, open surfaces and holes

— Can be used in ML frameworks: It should
be possible to feed the representation into a
deep learning framework

i'A: 113.5361mm = Y @ 5 = ] R: -5.4639m

August 2024 DTU Compute Al driven surface analysis




MICCAI 2021

Kristine Aavild Juhl'®) Xabier Morales®, Ole de Backer®, Oscar Camara?,

and Rasmus Reinhold Paulsen!

Implicit Neural Distance Representation
for Unsupervised and Supervised
Classification of Complex Anatomies

Training:
P (X:¥:2) z,
d o —
X
* Y
o z
. latent-
B vectors A
p 3 (u2) 3
13

Backpropagation

_

Testing:

5@6‘
o
°. ° 707
X ° .
d latent- !
vectors| |~ ’
e RS,
° !

2. Uniform point-grid

Decoder
(f)

Backpropagation
Predicted UDF on grid

August 2024 DTU Compute

Implicit Neural Distance representations

Train
Reconstruction

VOOISNE TTT

"WOO LS & TTF

Reconstruction

YOS ATTY
VOO LSS GTTT

Al driven surface analysis
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Distance fields

Signed distance fields Unsigned distance fields
+ Easy surface extraction at zero-level isosurface + Can represent arbitrary topologies
+ Differentiable at all points - Undifferentiable near surface

- Surface must be closed - More advanced methods needed for surface extraction

August 2024 DTU Compute Al driven surface analysis
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Distance fields and deep learning
Single shape representation

Distance from
(X,Y,z) to surface

—> | Decoder —>

N < X

f(p) »s, pER3,s€R

Predicts a signed distance to a surface given a position
No need for a voxel grid

Park et.al., “DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation ”, CVPR2019

August 2024 DTU Compute Al driven surface analysis
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Deep signed distance field?

« Unsigned distance fields:

does not remove
or filter geometric information

— Compact: Uses a minimum of parameters

— Consistent: There should not be (too many)
ways the same surface can be represented
by the parameterization

— Rotationally invariant: The
parameterisation is invariant to rotations.

— Can represent all topologies: Works with
non-manifolds, open surfaces and holes

® Distance from — Can be used in ML frameworks: It should
(x.y,2) to surface be possible to feed the representation into a

@ — > | Decoder (7 deep learning framework

August 2024 DTU Compute



=
—
—

W

Distance fields and deep learning
Single shape representation

What about more shapes?

Distance from
(X,y,z) to surface

—> | Decoder —>

N < X

f(p) »s, pER3,s€R

Predicts a signed distance to a surface given a position
No need for a voxel grid

Park et.al., “DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation ”, CVPR2019

August 2024 DTU Compute Al driven surface analysis
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Distance fields and deep learning
Multi shape representation

vy

X_

Y

yARN e
] Distance from

D = l?etgtrc‘)tr_s - (x,y,z) to surface
|4 — | Decoder —> @
L
f(p) » s, peER3sER

Park et.al., “DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation ”, CVPR2019

August 2024 DTU Compute Al driven surface analysis
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Auto-decoders

Auto-encoder Auto-decoder
Output
Input Qutput o

\
2\

Latent Space

@ Decoder

Latent Space

Encoder @ Decoder

Backpropagate

Backpropagate

August 2024 DTU Compute Al driven surface analysis
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Distance fields and deep learning
Multi shape representation - training

@

August 2024

DTU Compute

X ={(p).s):

\ N

5

N
N

\

sj = DF'(p;)}

N K
1
argmmZ(ZL(@(zl,p,) 50+ = |1zl )

0.{z;} =1 \j=1

X1 | | Distance from
;’_ t (x,Y,2) to surface

latent- | |
vectors ‘ > %

Backpropagation
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Distance fields and deep learning
Multi shape representation - training

Clamped L1-distance

X ={(py5): s;=DF'(p;)} a“gm‘“z ZL%(Z“"J) )+ 2 ||Zl||

@ 6 {Zl} =1
. \ »
-] Regularization
e X Distance from
] Z (x,y,2) to surface
atent Nowose |
L
z, [ ]
- \
L

Backpropagation
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Distance fields and deep learning
Multi shape representation — testing with unseen shapes

 Testing with unseen examples: N . )
Z = arg min Z L(fg(z-,p -),s-) + —||z-||
Xeest ={(pj.57): 5= DF**(p;)} © (xjspex S a?

Optimal latent
Input samples vector

Distance from

Ziest vy L
M (x,¥,z) to surface

[+]
p = (X,v,2)
o..

latent-

e
vectors || Decoder

HENEREEE HHQ

Backpropagation

August 2024 DTU Compute Al driven surface analysis
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Distance fields and deep learning
Multi shape representation — testing with unseen shapes

Optimal latent _ _ _
vector Grid of point-coordinates Reconstructed distance field

Input samples

ztest

—, | Decoder

HENEREEE HHQ

August 2024 DTU Compute Al driven surface analysis
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Distance fields and deep learning
Multi shape representation

August 2024

Decoder architecture:
— Deep Feed Forward network with 8 layers

— Latent vector and coordinates are
reintroduces at the 4th layer

— Latent space size: 64/128

512 512 512 512

512

512

512

Latent
Vector

FC

FC

FC

DTU Compute



=
=
—

W

Experiments with neural unsigned distance functions

Optimal latent _ _ _
vector Grid of point-coordinates Reconstructed distance field

Input samples

ztest

—, | Decoder

HENEREEE HHQ

August 2024 DTU Compute
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Data

LA EARS ESOF
- 106 surfaces - 571 ears (259/312 left/right) - 394 faces
- Topology: spheres - Topology: Tubes (192/202 male/female, 0-84 years)

- Topology: Planes

August 2024 DTU Compute Al driven surface analysis
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- Topology: spheres - Topology: Tubes (192/202 male/female, 0-84 years)
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Data

LA EARS
- 106 surfaces - 571 ears (259/312 left/right)
- Topology: spheres - Topology: Tubes

August 2024 DTU Compute

ESOF

- 394 faces
(192/202 male/female, 0-84 years)

- Topology: Planes

Al driven surface analysis




Experiment 1: Reconstructing complex anatomies
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Experiment 1: Unsupervised clustering

« 128 dim. latent space

August 2024 DTU Compute

PCA2

067 ® ESOF Male
a0 * 4
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’ 1. ® o 54 X
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X
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Experiment 1: Unsupervised clustering

 K-means with 3 clusters

— Dataset accuracy: 99.23%

August 2024

DTU Compute
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Experiment 1: Unsupervised clustering

 K-means with 4 clusters

0.6 1
@
— Dataset accuracy: 100% o ° i‘ﬁ :
0.4 4 e 1F¢§ =
o g - *
— EARS left/right accuracy: 100% o - °e
. ‘e’
§ 0.0 P ¢ 05" o
x® ® »
-0.2 %% %e®®
«® ? x ®e®
X >3<xx
—0.4 X 208 -
x
0.6 T T T T T T
0.4 —0.2 0.0 0.2 0.4 0.6

August 2024 DTU Compute
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Summary — neural (un)signed distance functions

* Neural unsigned distance functions can represent complex anatomies with arbitrary topologies.

« The self-optimized latent space holds important global shape information and can be used to
classify complex anatomies.

August 2024
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Cardiac movement

ECG

Q¥s

Volume curve

August 2024

120

100

®
o

Volume (mL)
(o))
o

S
o

20

Q' Vs

Left atrium

P Atrial contraction (depolarization)
QRS Ventricular contraction (depolarization)
T Ventricular relaxation (depolarization)

Left ventricular function

Left ventricular stroke volume LVSV =E-F

Left ventricular ejection fraction LVEF=(E-F)/F
Left atrial filling

Cyclic change CC=B-A .
Fractional change FC=(B-A)/B Left ventrlcle
Left atrial passive emptying

Left atrial reserve volume LARV =B -C

Left atrial active emptying

Left atrial stroke volume LASV=D-A

Left atrial ejection fraction LAEF =(D-A)/D

~_~
F :
- = = Left ventricle
Left atrium
0% 25% 50% 75% 100%

DTU Compute

Time in % of RR-interval

K. Sgrensen et al. Spatio-temporal neural distance fields for conditional
generative modeling of the heart. MICCAI 2024

Al driven surface analysis
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oo Rigshospitalet
oo [
“~ Temporal CT scans
R R R R
CFA
Image type 4D CT
Number of images 679
Acquisition period 2016-2021
Image dimensions 512 x 512 x (50-160)
Image resolution [mm)] (0.171-0.724) x (0.171-0.724) x (1.0-2.0)
Annotation method Automatic
(See Paper C)
Additional information Clinical demography

(Age, gender SBP)

K. Sarensen et al. Spatio-temporal neural distance fields for conditional |
generative modeling of the heart. MICCAI 2024

— t=95%

i
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Neural Distance fields A
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 Signed distance field (SDF)

fo(p) » d, peER3dER

Neural network *
Signed Distance Field

» Surface as the zero-level isosurface Decision boyndary
S={p € R¥Ify(p) = 0} " e @ Segi
P o o7,
« How do we approximate the SDF for a d(py) //‘\/ .o .
set of N shapes? Je o * e °
N K 1 ,
argmin > > L(fo(20® Pr)sdnsd) + = [12al; Zn
0,{zn} _ n=1j=1
Pk .—> fo dy

K. Sgrensen et al. Spatio-temporal neural distance fields for conditional
generative modeling of the heart. MICCAI 2024

Al driven surface analysis
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Left atrial appendage

Temporal Neural Distance fields A
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 Signed distance field (SDF)

Neural network fop) = d, pER’,dER :
Signed Distance Field
» Surface as the zero-level isosurface Decision boundary
3 ° ® SDF>0_ )
== € R = ° & T
S=1{p |fo(p) = 0} (Pt \9\/ ;/ g ~SDF<0
A ’,/f o
» How do we approximate the SDF for a set d(Pwt) TS e
of N temporal sequences? Jo o ® e °
N K T
1 2 Z
arg min Z D Lo (2@ (P trid) i) + =512l n
9{Zn} n=1j=11t=0
(pk' tk) ._" f9 dk,t
K. Sgrensen et al. Spatio-temporal neural distance fields for conditional

A generative modeling of the heart. MICCAI 2024

Al driven surface analysis
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Temporal Sequence completion

110 -
100 A
. 90-
—
E
v 80
=
=
S 70- )
—m— Normal (True)
60 ..m-- Normal (Completed)
—e— Abnormal (True) '+..
50 .-@- Abnormal (Completed)
0 25 50 75 100

Time step [%]

Normal

K. Sgrensen et al. Spatio-temporal neural distance fields for conditional
generative modeling of the heart. MICCAI 2024

0.0

Al driven surface analysis
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Summary

It is important to choose a representation that represents your data as well as possible
— Geometry / topology / level of details

You should be aware of the limitations of the representation

— Rotational invariance

What type of operations can you do with the representations

— Statistical measures

— Convolutions

— Pooling

Neural representations like neural distance fields is a major research focus
— Come with both benefits and weaknesses

August 2024 DTU Compute
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