


Fast detection of slender bodies in high density microscopy data

Albert Alonso
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Fast detection of slender bodies in high density microscopy data
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Longitudinal Self-Supervised Deep Learning for Radiotherapy

Alejandro Cortina Uribe

Motivation

- Radiation therapy for cancer treatment.

[TTTTY

Treatment

Diagnostic [Treatrpem planning] { Treatment monitoring } Follow-up
imaging imaging imaging

4 Sequential imaging data (treatment CBCTs) we could potentially extract more
Information from, about the development of the treatment.
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Longitudinal Self-Supervised Deep Learning for Radiotherapy

Alejandro Cortina Uribe

4 Unlabeled data — SSL n ~ 10°
Labeled | |
N~ 105 Transfer dat_a_‘, ' Prediction task E
learning . - Tumor recurrence |
Unlabeled Deep Deep . - Survival analysis )
: SSL learning b learning S
multimodal
Model Model
data
Hypotheses

d  SSL improves performance for downstream tasks.

d By modeling time we can identify image-based responses to treatment.






PHENOTYPING SEED SHATTERING
OF PERENNIAL RYEGRASS

INTRODUCTION

Perennial ryegrass (Lolium perenne L.) is one of the most
extensively produced forage crops in temperate areas used for
feed and as turf.

It is an important activity to increase seeds for commercial
market by achieving high seed yield however, seed shattering
IS @ major constraint.

OBJECTIVE

The study seeks to develop a
high throughput system to
phenotype seed shattering in
perennial ryegrass

Information on seed shattering of
perennial ryegrass, the stage at which
it occurs and an efficient method of
evaluating shattering is limited.

/ PEARFHE'G OF AGROECOLOGY 1 AUGUST 2024 PHANRASAFTAMISSAH
¥ UNIVERSITY |




METHODODLGY

Four (4) methods of measuring seed shattering
will be employed in this study

 Bagged inflorescence (Kiesbauer et al., 2023)

 Rolling on inflorescence (Tubbs & Chastain,
2023).

* Tray under plant
* Imaging (Ortiz et al., 2023)

EXPECTED OUTCOME

ANALYSIS * A high throughput protocol for phenotyping seed
Abscision zone of the spike will be assessed shattering in perennial ryegrass will be
under microscope at varying growth stages of established
the plant.  ldentify genotypes with low shattering traits
under optimum environmental conditions.

Seed shattering methods will be analysed . Development of high throughput protocol to
statistically using linear mixed effects models guide breeding of high seed retention of
accounting for the block design, genotype and perennial ryegrass.
wegther.conditions in the field. 1AUGUST 2004 PHSNRARARAMISSAH

/\I UNIVERSITY |
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Automated estimation of cardiac stroke volumes
from computed tomography

Average Ventricle Volumes "
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Using Al for Vertebral Segmentation and Fracture

Detection
Andreas With Aspe

Segmentation framework Fracture detection

Three-step model * Fracture = deformation

Spine
localisation

Vertebrae
localisation

1
v
LA E
| -leF ‘% R
Vertebrae =/ M MEF
segmentation Im — . —






Eye-tracking for
assessing X-rays
Image Iinterpretation

Anna Anikina
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Purpose: Explore the potential of eye tracking data

in predicting errors made by radiologists during the
analysis of chest X-ray images

Input data: Features, describing the movement of
the doctor's gaze while reading x-ray chest images

FC e ey prediction
h”‘ in} I ghlnt inl : : : h[ni (n) -__...l..._ 1Y
* e AT = Model A
A et g @ GRU 0o ode ccuracy
hg, co g ihq, €4 hi. ¢
A =y A A A e |
| ixation point 0 |ﬁu11onpqimﬂ K i ﬂn‘ﬂmpﬂintﬂl GRU
&o: I— &1 I s’:;_ . 0.83
A 4 A 4 A Tabular + image features
geumet ic _ geomamc - gsometrpc
pa’ l.l!n‘lp rmrl Irll\p?ml fa. f::i"]"p. In GRU
A 0.82
Tabular features
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AMAES: Augmented Masked Autoencoder Pretraining on Public
Brain MRI Data for 3D-Native Segmentation

Asbjern Munk, DIKU

e Brain MR

Pretraining

e Masked Autoencoder pretraining for 3D
segmentation

o . BRAINS-45K: The largest public
pretraining dataset

Finetuning







Unify tasks in Video Segmentation

Semi-supervised Video Object Segmentation (VOS)

Referring VOS

“A man in a red sweatshirt performing
breakdance”

Interactive VO -, Propagation ‘
T &S Model

Unsupervised VOS

Video Instance Segmentation

Set of labels = {human, dog, cat, ...}
20
[Caelles CVPR17, Caelles arXiv18, Khoreva ACCV18]







Hatzakis Lab

Cell segmentation and cell-specific intercellular PSF detections

+ automations for cell detection
How do we detect 3D PSFs in cells and gyant

characteristic

@ Cytosol signal

1) Select a cell
with dual

—exptessioir——
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= Volumetric Super-Resolution via Multi-Scale Transformers

Super-resolution output
Multi-scale context view

L

Super-resolution prediction _
of inner-most cube LW

Local window

Canier Toker (CT) Global atiention of CTa Ghohal attertion Global atéention
P - ENE)E 2ol
\ aF = olo[o
] Bl & | & 128
k! i Masked atiention
Y Shift 30 windows L
\ 1 = o = Cyclic shift -
z 1 samilar 1o Swin Transformar,
\l o |ﬂ_| = k1| k1 |1 {similar to Swin Translormer) i e { ) :
\ - gl - === '\—T—J o
Y ] T
I« (] H T Al |
= T I !l Mt - .
TR T TH TR AN
L (I 11 | g = MHSA )
Lozl window alfention w. CT ilndow g - j L .-i: L i‘_’- l
attention o I I

e -
! attertion " . - 1
G | -

12th of August 2024 DTU Compute August Heeg et. al. (aulho@dtu.dk)
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Synthesis of Medical Images

e Problem:

o Medical data is sparse and data
augmentation can be problematic
o Medical images are usually very big

e Solution

o Synthesize medical images with context
taken into consideration
o Utilize LDM to reduce memory footprint










Original Supervised Classification DINO SimCLR




Fast, accurate and compact
occlusion-based explanations for
unsupervised representation learning



Fast, accurate and compact
occlusion-based explanations for
unsupervised representation learning






DTU Wind

Channel Attention Separable Convolution Network
for Skin Lesion Segmentation
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Changlu Guo
Technical University of Denmark, Kgs. Lyngby, Denmark
chagu@dtu.dk
64
= 0 128 512 o5 1024 512 1024
4 4
B~ SO o di o
1024
@ Inspired by advanced mechanisms such as U-
Net, DenseNet, Separable Convolution,
32 Channel Attention, and Atrous Spatial
1 Pyramid Pooling (ASPP), we propose a novel
— 7 A4 — 7 4 network called Channel Attention Separable
/. - - J 22 Convolution Network (CASCN) for skin
= - pre lesions segmentation.
64 128
:j> ZeroPadding2D + Conv + BN ReLU + ZeroPadding2D + MaxPooling2D ) Dense Block Transition Block
SeparableConv2D +BN + ReLU - Atrous Spatial Pyramid Pooling UpSampling2D » SeparableConv2D + BN+ ReLU+ UpSampling2D

Modified Efficient Channel Attention » 1x1 SeparableConv2D + BN + ReLU + 1x1 Conv2D + Sigmoid

DTU Wind Footer [Division / Section] 33




- - DTU Wind

01U Channel Attention Separable Convolution Network
e
- for Skin Lesion Segmentation

Changlu Guo

Technical University of Denmark, Kgs. Lyngby, Denmark

chagu@dtu.dk

(;riginal Image True Mask UNet Residual UNet UNet++ MultiResUNet CARUNet CASCN
‘ } “ “ n u Table 1. Experiments on PH2 Dataset
k ; _ :
. Nr p ‘ r \ Models SE(%)|SP(%) | AC(%) | DI(%) | JA(%)

r NTr AN N

. 1 U-Net [3] 94.67 |93.61 |94.89 [92.56 |86.84
- A i = ik AL il d L B 28 K 4 Residual U-Net [4] | 94.14 [94.50 |95.07 |92.53 |86.84
. U-Net++ [5] 94.84 |94.01 |95.35 [92.81 |87.11
[‘ G I ! B MultiResUNet [6] [94.88 [94.87 [95.92 |93.56 |88.48
o CAR-UNet [7] 93.77 |94.95 |95.24 |92.85 |87.30
E c 4 h c D D c c CASCN (ours) 95.79 | 96.21 |96.45 |94.61 |90.18

<5 ICONIP 2023

o 4
-

[

The experimental results demonstrate that CASCN achieves state-of-

mber 20-23, 2023, Changsha, China
the-art performance on the PH2 dataset. e <020, Changsha, Chin

DTU Wind Footer [Division / Section] 34
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Deploying Deep Learning Model in Real

World Clinical Setting: a case study in obstetric
ultrasound

aaaaaaaa

Symmetrical:
Magnification 0K? No

we trained a model
smmeneel 7o we want to use it in the clinic

how?
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Source Matters: Source Dataset Impact on Model

Robustness in Medical Imaging

ImageNet or RadlmageNet'?

AT - BB
EREDEEeEl=S
iml VG FERM
FEOHNEPR P
A~y VERES
] s Y o] oW T
EHEEHIM“
EEECOEEEE
Bl e

Train (p,: € [0,1])
No findings (M) Lung mass (F)

Tag (lung mass) Denaising (lung mass) Gender (atelectasis)

; \\_;_\ Test (p.. = 1)
| Sy, No findings (F) Lung mass (M)

E 0.44 —e— ImageNet . )
- az4 =" RadlimageNet i i -
‘ Random init

0.1.2 5 8 1 0.1.2 5 8 1 0.1.2 5 8 1
Part Bart Part

CONICET
Universidad @ oy
IT UNIVERSITY OF COPENHAGEN Nacional O
s1nci(i)







Direct Observation and Kinetic Quantification of Stochastic Protein-Protein Interactions
Emily Winther Sgrensen and Nikos Hatzakis

Experimental setup Quantification
10 =] BIBIE 0 ! [ Protease binding to substrate,
08 S 10 3 N =173286
D -- X%
Ty My ’ :
0.2 | atf . 10 E Tl
0.0 W 7 < % &
0 50 100 150 200 250 300 350 400 ] o O .2
. ~ @ 10 " 3y
“e \ Y. o o @ § E ‘\‘\5 TZ
UEJ é 2 1.0{ — Protease on substrate > 10_3 ! 55§§
P ‘@ UNBINDING ‘@ *\
é %;b o8l é o FHRLL LTI T3
2 P | _g 0.6 (o ls\)o 10 — \ T T+ _ 7
:Z:J 804 = r@? 11 ] n
e ' E . 10~ 4 fHLR 1 i
> £ 02 L j sum— 5 4
2 00 - . 4
@ subsTRATE  (§ PROTEASE  °_ FLUOROPHORE o 1$?me (:2}0 T 10® JHEY > m— |
Residence time (s)
Direct observation
Applications
Toolbox to directly observe and quantify distinct protease binding
processes and substrate degradation synchronously
Streamlined quantification of nanoparticle interactions of
liposomes, biomolecular motors, drug-target interactions, enzymatic
reactions etc.

.? UNIVERSITY OF COPENHAGEN _{@ Hatzakis Lab
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Deep Generative Modelsfor Characterising
Atomic Structures of Nanomaterials

Frederik Lizak Johansen, PhD Student, ML Section, UCPH

Summer school on biomedical image analysis — from acquisition to fairness and bias

Data Curation for Chemically-Informed Graph Datasets [2]

The Data
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Optimized KiU-Net: Lightweight
Convolutional Neural Network for
Retinal Vessel Segmentation in
Medical Images

Hazrat Bilal
(CRT-Al, School Of Computer Science, University of
Galway)

Supervised By: Dr. Malika
Bendechache

Trinity College Dublin
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Introduction

* Blood vessels and circulatory system

* Diseases diagnose
* Diabetic retinopathy, Macular edema, Arteriosclerosis etc.
* Detection of Eye Diseases, main factors, and structural points
* vessel diameter, branch angle, branch length
* Manual diagnosis is difficult, subjective, and time-consuming
* Access to medical specialists and infrastructure

* Automatic detection of retinal diseases can address the gap

Problem Statement

* Low pixel proportion
* Low contrast

* Semantic information on small-scale vessels
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Methodology and Results

*  Optimized KiU-Net
Conv Channels of KiU-Net: [32,64,128]

Result of the proposed model on GlaS Dataset

Centre for
Research
Training

Foundation

Science

-

Ireland For what'’s next

Method F1 Score|loU
o . U-Net 77.78 65.34
Conv Channels Of Optlmlzed KIU_Net: [16’32’48,64] Res-UNet 78 83 65.95 ble: Result of the proposed model on RITE Dataset
Method F1 Score| loU |Parameters
Deeplabv3+ 76.01 67.04 Seg-Net 5023 | 3014 | 125M
MedT 3100 69 61 U-Net 5504 | 3111 | 31M
- KiU-Net 517 60.37 0.29M
HistoSeg 98.07 |76.73| 55timized KiU-Net (ours)| 79.80 [66.30] 0.18M
Optimized KiU-Net (ours)| 8221 T1.03

Ki-Net

| gyl

U-Net
’] m 1x1 ConvZD
OLLSCOILNA GAILLIMHE

PARTNER INSTITUTIONS
UNIVERSITY OF GALWAY

UNIVERSITY OF &5
%ﬁ%ﬂ!‘oﬁﬁ.‘&t‘“

ConvaD+
Max-Pooling+

Conv2D+
Upsampling+

LeakyReLU LeakyReLU
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University College Cork, Ireland
Colaiste na hOllscoile Corcaigh
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SFI Centre for Research Training mw\\‘
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Predicting urban tree cover from
incomplete point labels and limited
background information

Hui Zhang, Ankit Kariryaa, Venkanna Babu
Guthula, Christian Igel, Stefan Oehmcke

University of Copenhagen

UNIVERSITY OF COPENHAGEN
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Learning from incomplete & sparse labels - mask & objectness

Objectness Boundaries Instance area Target

(x)G)r, oQOr, rOT)
— =%, BCE(f (1) OF;, 00F)

L= L3P(f(x)Om, yOm)

15. Shijie Li, Neel Dey, Katharina Bermond, Leon von der Emde, Christine A. Curcio, Thomas Ach, and Guido Gerig. 2021. Point-Supervised Segmentation Of Microscopy Images And
Volumes Via Objectness Regularization. In International Symposium on Biomedical Imaging (ISBI). IEEE, 1558-1562. https://doi.org/10.1109/I1SB148211.2021.9433963 2, 4, 5,6, 7
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Name Description Setting Delineated Sparse
loUy  Flig BAg Recall, BA,
baseline Neither masking nor objectness =0
and enlarging positive labels to m = 1“?""’ — - - 0.0005  0.5002
a circle with 1.5 m radius. y = mdisk
Obj Reimplementation of [15]. p=1
m=yUhb 0.1191 0.5479 0.5575 0.5908 0.7844
F= -_lwxh
Mask Only supervised loss and mask- f =0
(ours) ing out unknown areas. m=yU(mM\ mdc) 04839 07551 0.8119 0.8994  0.8205
MaskObj As [15] but restricting object- f=1
(ours) ness loss to 1.5 m radius around 7 = mdisk 03364 07289  0.6978 07771  0.8399
points. m=yu (mDSM \ mdisk)
MaskObjThresh ~ As MaskObj but removing ob- g =1
(ours) jectness smaller than the speci- # =m%k A (o0 > 1) 0.4805  0.7660 07870  0.8345  0.8135

fied threshold (t = 0.2). m =y U (mOM \ mdisk)







Unsupervised Detection of Fetal Brain Anomalies using Denoising Diffusion Models

Markus Ditlev Sjogren Olsen?, Jakob Ambsdorf24, Manxi Lin', Caroline Taksoe-Vester3, Morten Bo Sondergaard Svendsen?,
Anders Nymark Christensen?, Mads Nielsen24, Martin Gronnebaek Tolsgaard?, Aasa Feragenl#, Paraskevas Pegios'-4

Technical University of Denmark, 2University of Copenhagen, 3CAMES Rigshospitalet, Pioneer Centre for Al

Input Corruption Masking Inpainting Average Ditference
containing via noising to of the by iterative ) of the of average
anomaly different levels fetal head reconstruction inpaintings and input







Universal Image Segmentation with Diffusion Models

e Segment any image, either completely

_ i Noisy mask _|_,
agnostically, or conditioned on
o Number of classes, Label names &1 Attn — »  Mask
o Bounding boxes L Dlﬁusmn UNet

o Foreground/background points

o Instance/semantic |P°S‘”'°°ESS'”QJ

o Related images (e.g. few shot) [ = *ﬂ
e Talk with me about T

o Diffusion, Generative models | Preprocessing |

o Anything really

o Programming r

labels points

num classes bbox
t=1 Drenoising Diffusion Process - t=0 {no noise) I

features time






Deep Learning Based Localization

and Characterization of White Matter Lesions
Julia Machnio!, Mads Nielsen!, Mostafa Mehdipour Ghazi!

! Pioneer Centre for Al, Department of Computer Science, University of Copenhagen, Denmark

L

Subject labels

__________________________________________________________________________

' (B)

Predicted WMH

T1 & FLAIR Regional WMH

..........................................................................






Al-Driven Outlier Detection of Human
Vertebrae from CT Scans

Detecting vertebral fractures i D

@S |
T

Tz

T3

¥

using Al

» Testing different neural networks
with autoencoder architecture.

* CT scans of Lumbar 1 vertebra.

 Optimal convolutional U-Net
model.

» Trained on healthy vertebra TR
Images. |
Coceyx

* Investigate performance with e ;Moo the
unseen data.

Figure 2: An illustration of the components in the autoe

Sacral

Julie Boel og Katja Norsker igure 3: Overview of some of the evaluations performed in the project.
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Eddy Currents

Eddy current cormupted metabolite spectrum
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Diffusion-weighted MRS P o e
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A. Magnetic resonance spectroscopy (MRS): cell-type specific in-vive neurochemistry

Os acquired signal
_rj = p .
: 5 g O &.Eéj :> newonal signal —
r
E |
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&) (B}
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" q a2 g .' ! R 100 i] ~100 100 [i} =100
ff £ i glial signal e B - | *"' Fraquancy (Hz) Frequency (Hz)
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MR Epecirascopy

Velume (~BmL) Chemical shift (ppm) e él:arni?:;:I s:i-lﬁl-:ppill.':] b
] - - L}
B. Diffusion-weighted imaging (dMRI): microstructure at C. Diffusion-weighted MRS [dMRS): microstructure at S t t t t
* high spatial resolution, * low spatial resolution, e n S I lVI y 0 m 0 I 0 n
* low compartmental and cell-type specificity = high compartmental and cell type specificity

Water spectrum
- : |
Frequency shift
dueto
respiration

H,0

Inis)

b

Ligneul, Clémence, et al. "Diffusion-weighted MR spectroscopy: Consensus, recommendations, and resources from
acquisition to modeling." Magnetic resonance in medicine 91.3 (2024): 860-885.

freq (ppm)
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Perfusion Defect in Cardiovascular

s L2

A (
» —plaque
blocked
normal artery
artery

Perfusion defect

Short axis images




UNIVERSITY OF

LEICESTER

Problem Definition

Perfusion imaging

Perfusion Defect

?

Dark-Rim Artifact

Leicester Biomedical

N I H R Re.search C.entre

LEICESTER = e

mo e

& NI H R | Leicester Biomedical
p Research Centre
Analyzing MRI Scans for Coronary Artery Disease

proving C: D with Al

1 Mahsa Pourhossein Kalashami ,2 Dr Ranjit Arnold,* Dr Dimitrios Statharas

. University of Leicester, Engineering Department
2 University of Leicester, Cardiovascular Department

@ Abstract

Artificial intelligence (Al) enhances cardiologists' analysis of heart MRI scans, focusing on perfusion imaging to detect coronary artery
disease (CAD). Utilizing a unique dataset from Glenfield Hospital in Leicester, which includes patients from diverse ethnic backgrounds,
the Al model distinguishes genuine perfusion defects from artifacts nused by me soannlng process. This aids in accurate diagnoses without

invasive tests like angiography, reducing patient

with Al and deep learning capabilities in

By
data analysis, the approach promises quicker, more precise diagnoses, improving efficiency, reducing costs, and enhancing healthcare

inclusivity.

@ Introduction

Cardiovascular dls-asls are the Ieadlng cause ol glnbal
mortalif
o e e e

Despite advancements, the accuracy of Cardiac Magnetic
Resonance Imaging (CMRI) is often compromised by Dark Rim
Artifacts (DRAs), which can mimic genuine perfusion defects
and mislead diagnostics.

This research aims to develop a robust Al-driven classiﬁcaﬁon
model capable of distinguishing true cardiac

DRAs, using advanced computer vision and deep Ieammg
techniques.

@ Dataset

This dataset was collected following strict ethical protocols,
including obtaining patient consent and anonymizing the data.
1. Dataset Description

Dataset detaits

(@ Methodology

In the methodology section of this project, a two-part approach is
employed, comprising data preprocessing and model
development.

Initially, heart MRI videos are converted into a series of images
through frame extraction. This is followed by dimension reduction,
where extraneous frames are selectively removed.

The images are then cropped around the
region of interest (ROI) and resized to

standardize input sizes.

Extracting 60 frames
For model development, a 3D
Convolutional Neural Network (3D-
CNN) is utilized to capture both spatial
and temporal correlations, which are Dl f)rs: 15 Frames
crucial for monitoring changes in blood  Resizingto 128* 128Images
flow within the heart's left ventricle.

Dimension Reduction

ROl Detection
(cropping around Center)

4. Data Preprocessing Flowchart
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3. General overview of Dataset

@ Results

Model Evaluation: A 3D-CNN classification model was evaluated
on 418 cardiac MRI scans, aimed at distinguishing genuine
perfusion defects (GPD) from Dark Rim Artifacts (DRA).

2. Classification Report

Classes Precision  Recall Fl-score  Support
Class 0 (GPD) 0.61 0.70 0.65 69
Class 1 (DRA) 0.46 0.37 0.41 49

® Conclusion & Future work

=+ There is a necessity for improved detection

= The current model identifies GPDs with good rnllablllty but lhere is room for |mpmvement_

and feature

model.

= Additionally, the pre-processing stage needs to be annanced in order to improve the outputs of the model.
= Given the limited data availability some Data Augmentation methods need to be applied to improve the performance of the
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How are mitochondrial motility and localisation regulated in alpha cells?
How do mitochondrial motility and localisation impact glucagon secretion?

67

- Glucagon helps to increase blood
glucose when needed

- Type 2 Diabetic patients suffer from
dysregulated glucagon secretion

alpha cell

ATP =)
~ (& . e

e
LALE

s+ Glucagon
secretion

Isolated pancreatic islets

Live cell confocal

maging >

Glucose
stimulations and
TEM

v

Analysis of
mitochondrial
motility

Glucagon secretion
measurements
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DTU Incorporating Clinical Guidelines through Adapting Multi-modal Large
Language Model for Prostate Cancer PI-RADS Scoring

Tiantian Zhang*, Manxi Lin*, Hongda Guo, Xiaofan Zhang, Ka Fung Peter Chiu, Aasa Feragen, Qi Dou

Motivation | Methodology-Overview

i

® Improving Diagnostic Accuracy: Current deep learning
methods for PI-RADS scoring often neglect the PI-RADS L d Stana GRBBULHUL Stage two output fi T,
Lo S dali ; ; ; ; | 2lage one output: Stage two output: ltamall, .
Clinical Guideline (PICG), which radiologists use, potentially egen : Ground truth score: 3 . .
compromising the accuracy of prostate cancer diagnosis T2W/ADC&DWI There is heterggeneous o 3 \ ® Two-Stage Fine-Tuning Strategy.
through MRI. ‘ — 1The signal is focal... L. ¥ Stage One:Developed a domain
® Incorporating Clinical Expertise: There is a need to LLaMA ;% Predicted score: _/ adapter layer to handle 3D MRI
seamlessly integrate clinical gwdellngs like EICG into Al % - Frozen | | ool ____ OO . 3 inputs and instructed the MLLM
models to ensure that the nuanced information used by : r & r : & I A .
radiologists is effectively captured, thus enhancing model i Frozen in Stage one L Adapter J L Bias J to differentiate MRI sequences.
trustworthiness and reducing subjective biases. " Tainedinstagetwo; | T — /= === =°%  E=SmSm s Classifier v’ Stage Two: Translated PICG into
® Minimizing Model Modifications: Developing a method that i T guiding instructions to generate
incorporates PICG into existing scoring networks without —@_ Image% — . .

. : ; . Instruction — Projection P & PICG-guided image features and
requiring extensive architectural changes or additional i encoder & ) j 4
annotations, to streamline the integration process and in Stage one [} \ Image aligned these with the scoring

.

improve usability in clinical settings. ) [ Domain&-»%)i(é] '—@— L(G,S/) classification network's features.
_ adapter layer C3p J o whatisthe | Q: Describe thel cjinjcal eneader ® Feature Distillation: Incorporated
: ./ . @ = network through feature distillation,
.-. minimizing the need for

e Sapetwe images have different

® Performance of different methods on the private test set. B three sequenced] llikelihood... || 'y~

Results are reported with the average and standard deviation M {T2W,  ADC&DWI}

over three independent runs. Guideline Network Scoring Network architectural changes.
Model Accuracy % 1 | MSE | | MAE | |Precision%? | Recall%?t| F1%?1
VGG [23] 31.6+1.4 1.38+£0.2|0.92+£0.5| 17.4+1.5 |22.64+0.8|17.4+1.8
VGG [23]+PICG (ours) 38.6£2.1(+7.0) | 1.0940.1| 0.77£0.0 | 21.1+0.3 | 22.941.2 | 21.040.6 \ )
Kang et al., [11] 30.0+4.0 1.43+0.3 | 0.93+0.1| 13.24+2.6 |20.1+2.5 |14.5+2.0
Kang et al., [11]4+PICG (ours) 36.4%1.0 (+6.4) | 1.2540.0 | 0.83+0.0 | 16.143.6 | 20.9+1.8 |15.9£2.3
Sanford et al., [21] 30.4+0.4 1.61+0.2(0.97+0.1| 17.74+1.3 |22.1+1.7 |16.1+1.1
Sanford et al., [21]+PICG (ours) | 35.740.9(+5.3) | 1.38+0.2 | 0.87+0.1 | 18.4+1.2 |22.0+0.5 |17.4£1.5
Yu et al., [27] 33.8+0.6 1.2240.2 | 0.83+0.1 18.2+6.1 21.842.3 [ 13.4+3.1
Yu et al., [27]+PICG (ours) 38.6£0.4(+4.8) | 1.17£0.1 | 0.79+£0.0 | 20.4+0.6 | 23.8+1.4 |20.6+0.8

® Model performance with different a and the effect of two-stage
fine-tuning on model performance.

Loss weight a = 0.2 | Loss weight a = 0.4 | Loss weight a = 0.6 ng‘ﬂe‘:ﬂ:ll il w/;al:;;fc wit3h7 !;;BCG Bml;rxml;ihm g f : g
Ace.% 1[MSE| [MAE] [ Acc.% £ [MSE{ [MAE] [Acc.% T[MSEL[MAEL  guuford et al. [21]| 30.7% 36.5% 2.1%
S (1o [0 | B0 (12 [ 0B | B 1m0 ose. “newcainl] moe | sk | g Institute of Medical Intelligence and XR
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Prediction of Breast Cancer Risk in Women Aged 40-50 Using BERT-Based Model

Maria Elkjeer Montgomery!, Mads Nielsen!

Pioneer Center for Al, Department of Computer Science, University of Copenhagen,

Denmark
i~
Background Visit 1 Visit 2 Visit 3 Visit 4
] - Female patient - Patient age: 49 - Patient age: 49 - Patient age: 49 - Patient age: 51
© - - Diag1 -Labi:3.2 - Lab2: 250 -Lab4:0.5
o - Diag2 - Lab2: "Cancelled” - BC Diag
- Medt - Lab3: "EKG normal®
b
—
Position 0 0 1 1 1 1 z | | | ‘ | | 3 3 4 4
+ + + + + + + + + + + + + +
g Age 0 0 0 49 49 49 49 49 49 49 49 49 49 51 51
e |
L] + + + + + + + + + + + + + + +
'-% - Concepts E(CLS) | E(BG_F)| | E(SEP) E(Diag1) | E(Diag2) E(Medi) | E(SEF) E(Lab1) | E(Lab2) | | E(Lab3) ‘ | E(SEP) | E(Lab2) | | E(SEP) E(Lab4) E(BC)
E + + + + + + + : + + + + + + + e
LIE.I Lab result F(-100} F(-100) F(-100} F{-100) F{-100) F{-100) F{-100) F(3.2) F{-200) F{-100) F{-100) F{250) F(-100} F(0.5) F{-100)
+ + + + + + + + + + + + + + +
Segment 0 0 0 1 1 1 1 0 | 0 | | 0 \ | 0 | 1 1 0 0
b
5
=3
T { E_1 E2 E3 E4 ES E6 E7 E8 | | EQ | | E_10 ‘ | E_1 | [Eq2 |[ Eq3 E 14 E 15
g ] L
=

v e
-a A

L]
« www.aicentre.dk
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Output
Probabilities

[ Add & Norm ]
Feed
Forward
/_:\ [(Add & Norm |~_-:
Add & Norm Multi-Head
Feed Attention
Forward T 7 Nx
— ]
N Add & Nerm
—{(Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
| — \ —
Positional ) @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Qutputs
(shifted right)
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Implicit Neural Representations for Registration of Left Ventricle
Myocardium During a Cardiac Cycle
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Detecting -
Anomalies i

Mia Siemon Industrial PhD



Can we simplify 1t?
What Is the minimum?

| Mia Siemon - Industrial PhD Candidate - Detecting Anomalies in Videos



Could it be the analysis of mere bounding
boxes?

Can we simplify it?
PRSI SO What is the minimum??



How about object si/houettes?

Can we simplify it?
| Mia Siemon - Industrial PhD Candidate - Detecting Anomalies in Videos Wh at IS the m I n I m u m ?





4%

Detection Accuracy
Compared to Prior Art

Can we simplify it?
| Mia Siemon - Industrial PhD Candidate - Detecting Anomalies in Videos Wh at IS the m I n I m u m ?



Detection Accuracy 1 O S
Compared to Prior Art

Model Training Time

Can we simplify it?
| Mia Siemon - Industrial PhD Candidate - Detecting Anomalies in Videos Wh at IS the m I n I m u m ?



Yes, we can.

Bounding Boxes and
Silhouettes.

Can we simplify it?
| Mia Siemon - Industr ial PhD Cand idate - Detect ing Anomal ies in Videos What IS the mlnlmum?
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Policy-Space Diffusion
for Physics based Character
Animation

Michele Rocca, PhD student

Supervised by:
Kenny Erleben, Sune Darkner, and Sheldon Andrews

DIKU-DTU-AAU Summer School, 2024
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Dance Motion Policy

On trained character On unseen characters
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Regularized training:

similar motions->similar policies

VAE latent
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Policy Diffusion Model:

Discrete set of trained policies -> Continuous sampling

Diffusion Training \
backwards T T T T T T
bored-child b, Wy b, W by Wi e T
dance | T T W S R S
fastwalk 1 T1 1 1 T1y,T1 ! ! -
happy-hops b, w; b, W, by Wi T-1
limping P R T [
military o : : s : : .
model T ) . . . T T ) g &
old b, w bZT ' WzT-l b Wi w— T
painful . . : ;
sneaky : : . : H ¥ g 5
walk AN /-\ N
N
E Wy ?2 W2 bF Wi ¢ 0







Counterfactuals is all about “What if...”
Fx. What if Harry Potter went to Slytherin? 1]

Shortcut learning happens when there’s spurious correlation
Fx. Scans from patients are more likely with support devices &

So what if the support devices are
removed?

—

—

Input sample Our CF wrt. shortcut
Disease w pacemeaker remove pacemaker

lllllllllllllllllllllll

- : - 1
fx?)=019 How strongly

: does changing
2 8 R :  the shortcut
8~ : ”._,_j feature s
a5 *  change model
. predictions  :
080 ... J@W? & Sounds interesting?

*
-----------------------

Check our poster!

. Fast Diffusion-Based Counterfactuals for Shortcut Removal

CENTRE

fral gnd Generation

G-
o> Nina Weng+, Paraskevas Pegios#, Eike Petersen, Aasa Feragen, Siavash Bigdeli
> Technical University of Denmark, Denmark * Equal contribution
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Structural analysis of mozzarella cheese D, TUl Edke
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Stochastic subset selection in partially Bayesian transformers -4
¢ S-KFAC full model Last Layer LA F. GGN === Temp. scaled MAP
¢ Fully Stochastic ¢ Max ||W]|] MLP 1 Module
SST-2 MRPC RTE
0.40 0.601 1 1.00
0.38 0.95
036LL Y- 0551 0.90
- _
E 0.34 0.50 0.85 I
0.32 0 4] 0.80
0.30 I‘ """"" I """ 0.75
0.28 +t 0.401 }?I 4| o T
¥ s 17 s - e
10° 10° 107 10° 10°  10° 107 10° 10° 107 10°
Num. Floats Num. Floats Num. Floats

What can we do with partially stochastic models?

® \We can achieve fully (approximate) Bayesian behaviour from only partially stochastic models if...

® \We select the weights (somewhat) intelligently
® \We include the prior variance as a hyperparameter for optimization

1 DTU Compute 6.6.2024
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Search In free-text
radiology report
database using large
language

model cooperation

Reza Karimzadeh, Bulat Ibragimov
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Search in free-text radiology report
database using large language models

UNIVERSITY OF COPENHAGEN

Itemization: Llama 2, Orca 2, Yi chat models

Find the closest embedding of items for the query

Semantic Search by
LLMs

e Y

Itemization Module
2 J

@ R\
Semantic Search

Module

5.0

4.5

1.5 1

1.0 1

I

Collaborative LLM  Yi Orca Llama

No LLM

Medical Reports
Database

12/08/2024 95

Itemization Module

Main Report

Llama
Itemization

Indication Start

Tumor caput pancreas.PanCreas-specific CT on dd.mm.yy with a
lack of contrast in arterial phase. Is requested kindly rectified for the
assessment of resectability. Awarded friendly remedy for the sake of
assessing resectability before MDT RH. PT meets in KMO on
dd.mm.yy CT assero abdomen in arterial phase. In agreement with Jan.
Indication stop

Description Start

There is tumor in the caput pancreatis with a size of about X cm with
estimated ingrowth in Duodenum and growth in one corner of Vena
Mesenterica Superior around the third part of the circum ferment.

No impact on arteria mesenterica superior.Vena Porta is not affected
by the tumor.Smaller lymph node in the region. Easily dilated
pancreasbug and essential dilatation of Intrahepatic bile roads and
moderate dilatation of choledochus. Focal change measures Y cm in
Left liver lap probably a cyst.

Description Stop

Orca
Itemization

G
Itemization

Llama output

1. Tumor in the caput pancreas with an estimated size of X cm

2. Ingress of tumor into the duodenum and vena mesenterica superior
3. No impact on arteria mesenterica superior

4. No involvement of vena porta

5. Presence of smaller lymph nodes in the region

6. Easily dilated pancreatic duct and bile ducts

7. Moderate dilatation of choledochus

8. Focal change in the left liver lobe, likely a cyst

Orca output |

1. Tumor in the caput pancreas with a size of about X cm.

2. Estimated ingrowth in duodenum and growth in one corner of Vena
Mesenterica Superior around the third part of the circum ferment.

3. No impact on arteria mesenterica superior.

4. Vena Porta not affected by the tumor.

5. Smaller lymph node in the region.

6. Easily dilated pancreas bug and moderate dilatation of
intrahepatic bile roads.

7. Moderate dilatation of choledochus.

8. Focal change measures Y cm in left liver lap, probably a cyst.

Yi output
1. Tumor located in the caput pancreatis (head of the pancreas) with
a size of approximately X cm.
2. Tumor has suspected ingrowth into the duodenum and growth in
the Vena Mesenterica Superior.
3. No impact on the Arteria Mesenterica Superior.
4. Vena Porta is not affected by the tumor.
5. Smaller lymph node present in the region.
6. Pancreasbug and intrahepatic bile ducts are dilated, with moderate
dilatation of the choledochus.
7. Focal change measuring Y cm in the left liver lap, likely a cyst.

Merged Items |

1,
2. No involvement of vena porta

3. Presence of smaller lymph nodes in the region

4. Easily dilated pancreatic duct and bile ducts

5. Focal change in the left liver lobe, likely a cyst

6. Tumor in the caput pancreas with a size of about X cm.
7

g

Ingress of tumor into the duodenum and vena mesenterica superior

. Estimated ingrowth in duodenum and growth in one corner of Vena
Mesenterica Superior around the third part of the circum ferment.
Easily dilated pancreas bug and moderate dilatation of intrahepatic

Embedding

o

Text Integration

A

bile roads. D Block
9. Moderate dilatation of choledochus.
10. Focal change measures Y cm in left liver lap, probably a cyst.
11. Tumor has suspected ingrowth into the duodenum and growth in
the Vena Mesenterica Superior.
12. No impact on the Arteria Mesenterica Superior.
13. Vena Porta is not affected by the tumor.
14. Pancreasbug and intrahepatic bile ducts are dilated, with moderate
dilatation of the choledochus.
i E v
” / J 7 ¥ 7
Most Related Euclidean ﬁLIama's Items /’Orca's Items ‘J" ,/’ Yi's Items ,f’Multi-Model Item;;’
Reports Distance | Embeddings | | Embeddings | Embeddings | Embeddings |
For All Reports
,/’ Query |

|/ Embedding /,f

Semantic Search Module







Synthesis of Geometric Models for
AXxons

Ruiqi Cui, Sidsel Winther, Tim B. Dyrby, Andreas
Baerentzen

Input — Initialization

(a) (b)
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Pre-training LLMs require big GPU clusters

Pre-training a LLaMA 13B
model with Adam and a
batch size of one requires
over 100 GB of memory.



Pre-training LLMs require big GPU clusters

Llama 13B

- nn
Pre-training a LLaMA 13B A #4 /// ,///
model with Adam and a

batch size of one requires  Galore
over 100 GB of memory.

LoQT
: w## OOM
| RTX 4090 (24GB):

10 20 30 40 50 60 70 80
Memory Usage (GB)



LoQT: Low Rank Adapters for Quantized Pre-Training

* Pre-training from scratch
while only optimizing a single
low-rank factor per layer.

> Frozen

14

oS

Optimize

/A

Low rank
_—~ factors



LoQT: Low Rank Adapters for Quantized Pre-Training

* Pre-training from scratch
while only optimizing a single
low-rank factor per layer.

* Keep most weights in 4-bit
precision.

* Match reqular FP16 training

oS

Optimize

ok B g
L 5 Low-rank
%~ factors

\ /

4-bit precision
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LoQT: Low Rank Adapters for
Quantized Pre-Training

Sebastian Loeschcke®, Mads Toftrup*, Michael J. Kastoryano, Serge
Belongie, and Vésteinn Snaebjarnarson

PIONEER CENTRE FOR
ARTIFICIAL INTELLIGENCE

UNIVERSITY OF 6
COPENHAGEN @ IT UNIVERSITY OF CPH > :

@ AARHUS UNIVERSITY

*Equal Contribution
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SUPSI
Protoporphyrin fluorescence quantification in

glioblastoma tumor phantoms

Marinelli S.", Oberli C.", Mazevet M.}, Kaelin A.?2, Marchi F.?, Cardia A.?, Reinert M.?, Allegri D.", Gardenghi R.

'SUPSI-Department of Innovative Technologies, Institute of Systems and Applied Electronics, 2Neurocenter-Instituto di Neuroscienze cliniche della svizzera italiana, *USI-Universita
della svizzera italiana

Sebastiano Marinelli, Eng.

31 luglio 2024



SUPSI Titolo principale della presentazione

Content

e Context: Protoporphyrin (PplX), 5-ALA metabolite, is used in fluorescence-guided surgery for tumours resection.

https://neurochirurgie_inse! chie |ases—spe[:|a ities/special-techniques/5-ala-fluorescence

e Aim: Need for quantification to reduce inter-observer variability.
e How:

— Development of two models.

— Development of a quantification technique with calibration curve

— Comparison in two systems (Orbeye from Olympus and FLUO custom made setup from SUPSI).
e Results:

— Accurate quantification in gel using calibration curve

— Relative quantification in small brain model.
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3D Whole-heart*fibrgsis:
Can we/fquantify it?
7. ‘

¢
|
g

Perivascular fibrosis

Collagen in a ReninAAV UNx db/db mouse



Cardiac fibrosis

2023-11-13


3D Whole-heart fibrosis: Can we quantify it?

Whole-heart collagen staining Clearing and

db/db UNx-ReninAAV mouse model with ‘Fast Green' dye 3D imaging Al-assisted analysis
iDISCO:

iDISCO standard protocol

Triple _
Hit
i J 9 :
o \) %
reninAAV - Hypertension Ly 6 mage anatys)

Unx - Kidney disease 3D Whole-hea
db/db Mice - Diabetes ific oG

volume

3D Light sheet
imaging data Training  f--comoommeeeeo -,

High throughput cardiac
analysis platform that
opens the door to
testing new
therapeutics.

— Inference

Preprocessing

3D Fibrosis
segmentation






If we want models that can enhance the
resolution of medical CT images, we
need real data and better performance

metrics.



FACTS d ata S&tur Archaeological CT

Superresolution)

— O\
)
\ \
R \ \

//7
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13 proximal femurse+ Publicly available
e 2 CT resolutions
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Validating YOLO v8 and SAM Foundation
Models for Robust Point-of-Care
Ultrasound Segmentation

Sumit Pandey
Phd Fellow

Supervisor: Prof. Erik B Dam



Methodology

Dataset Preprocessing Training EResuIts
e Medical Iimage  segmentation - - |
performed using YOLOv 8 with : :
SAM and HQ SAM models and 4 \
comparing with variations of UNets 5 o || !

| Additional Test dataset I

e All six models were trained on 510
Images and corresponding masks
from 175 patients and tested on an

Independent cohort 375 patients .

Image and mask Resizing: (256, 256)

Image Normalization: 0 -1

Special Preprocessing for YOLOv8 Before Training

e Analysis revealed that the YOLOvVS8
model outperformed both Unets
models and YOLOvV8 + SAM.




Result

Aorta segmentation and Detection using YOLOVS

This software generates the segementation mask for Aorta for the Point of Care Ultrascund (POCUS) images

] Upload an image J Segmented Image

MIDDLE .
MIDDLE

Clear Submit

Please click here to
check the web-app






FregRISE: Explaining time series using
frequency masking

- Time series data is ubiquitous in several critical domains
- Health, finance, climate monitoring

- Explainability -> salient information in latent domains

- Can we provide explanations in dual domains where salient
iInformation is sparse?

Time domain Frequency domain

[l

0 20 40
L k




FregRISE: Explaining time series using

frequency masking

=R EE
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Quad mesh generation using RL

ME

iy —
(a) Skip face (d) Extrude face
& s !J - d .
=
(b) Rotate face around Z axis (e) Move face
— —
(c) Rotate face around Y axis (1) Collapse face
Figure by Alba Reinders Sanchez, Figure by Pandey et. al., “Face
Master thesis Project at DTU, 2024 Extrusion Quad Meshes”, 2022

12th of August 2024 DTU Compute Thor Christiansen et. al. (tdve@dtu.dk)



=
—
=

= Quad mesh generation using RL
Initial cube Feature vector: [Area(f),a,r, 0]
R B SN bg N -

o[Area(ﬁ),a,, 1, 6]

2. \ 4 I. [Area(f:?), Ir, Fo, 92]
/}\ i=1 [Area(f,), ay,

[Area(fy), as, 13, 05]

Target mesh

12th of August 2024 DTU Compute Thor Christiansen et. al. (tdvc@dtu.dk)
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Using Deep Generative Models for Atomic Structure
Prediction of Metal Oxide Nanoparticles from X-ray

Scr )
g N ) g Latent space h 4 )

Output

N\ / Nanopatrticle structure

Conditioning Input
Structure graph

X-ray scattering data

=pp Decoder

/ \ )

v ry

o
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Nacala-Roof-Material: Drone Imagery for Roof
Detection, Classification, and Segmentation
to Support Mosquito-borne Disease Risk
Assessment

Venkanna Babu Guthula, Stefan Oehmcke, Remigio Chilaule, Hui Zhang,
Nico Lang, Ankit Kariryaa, Johan Mottelson, Christian Igel

novo nordisk
foundation

UNIVERSITY OF
COPENHAGEN .




Data

14.52°5
14.53°5

14.54°5

40.68°E 40.69°E 40.70°E

2040

14.57°S
2000

14.58°5

Pitf t?'gil: 40.69°E 40.70°E 40.71°E

|:i val Roof Materials [_] Thatch [ concrete

[ test [] Metal Sheet [_] Asbestos || No Roof

B ext (a) (b) (c)

Figure-1: Nacala-Roof-Material data



Results

DlﬂSl Dtﬂl

pixel level object level pixel level object level
Model Name loU mloU® mloU®> APs; mAP, mAP3, IToU mloU® APs; mAPZ,
YOLOVS 0.866 0.713 0568 0941 0.815 0.698 0.896 0.761 0963 0.846
=+ 0.012 + 0.019 +0.015 &+ 0.003 £ 0.011 + 0.018 + 0.002 + 0.006 + 0.005 =+ 0.008
DINOV? 0833 075 0.562 0.882 0.789 0.683 0905 0.747 0919 0.806
+£0002  £0004  £0003 £0004 £0006  £0008 £0000 +£0011  +0005 = 0.008
DINOV? 0.884 0.763 0.565 0930 0.836 0.725 0905 0.852 0956 0.852
DOW =+ 0.001 + 0.002 =+ 0.004 =+ 0.005 + 0.002 + 0.004 + 0.001 + 0.007 + (.001 + 0.007
U-Net 0.895 0.757 0.570 0910 0.810 0.688 0909 0.748 0.929 0.787
40003 £0024  £0016 £0005 £ 0008 40014  £0001  £0007 £0000 <0011
LN 0.895 0.775 0577 0935 0.836 0.730 0911 0.764 0947 0.812
DOW +£0002  £0013  £0009 £0001 40005 4+ 0011  +£0002 40006 +£0004 -+ 0.008
OLORG 0.824  0.708 0.550 0910 0.816 0.597 0.885 0.785 0.948 0.849
VOMuli +0023 40010 40017  +0005 4+ 0009 4+ 0007  +£0002 40006 +0003 +0015
DINOV2xr. 0.880 0.774 0.699 0.899 0.820 0.689 0.899 (0818 0.946 0.880
Mulu +0002  +0004 +0012  4+0003 +0010 40025 40002 +0005 +0001 =400l
DINOV?2 - 0.885 0.786 0.734 0918 0.824 0.702 0902 0819 0950 0.875
DOW-Mult 4 ppo1 40006  +0006 +0003  +0011 +0.013 40001 40006 +£0005 =+0.010
. 0.879 0.783 0.634 0924 0.850 0.716 0903 0805 0943 0.844
Multi =+ 0.012 + 0.010 =+ 0.024 =+ 0.004 + 0.011 + 0.018 + 0.002 =+ 0.020 + 0.010 + 0.039
U-Net : 0.892 0.777 0672 0928 0.829 0.671 0904 0794 0942 02812
DOW-Multi 40001 40012  +0042  4£0002 40011 40022 +£0002 +£0014 +0005 0021

Table-1: Results on Nacala Roof Matenal data set
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Combining Physics and Deep Learning: A New
Framework for Image Denoising
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Fetal Ultrasound Image Segmentation for Measuring Biometric Parameters Using Multi-Task Deep
Learning
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