

Fast detection of slender bodies in high density microscopy data Albert Alonso

de(ep)tangle

Rigshospitalet

Longitudinal Self-Supervised Deep Learning for Radiotherapy

Alejandro Cortina Uribe

Motivation

Radiation therapy for cancer treatment.

Sequential imaging data (treatment CBCTs) we could potentially extract more information from, about the **development** of the treatment.

Longitudinal Self-Supervised Deep Learning for Radiotherapy

Alejandro Cortina Uribe

Hypotheses

- SSL improves performance for downstream tasks.
- By modeling time we can identify **image-based responses** to treatment.

PHENOTYPING SEED SHATTERING OF PERENNIAL RYEGRASS

INTRODUCTION

Perennial ryegrass (*Lolium perenne* L.) is one of the most extensively produced forage crops in temperate areas used for feed and as turf.

It is an important activity to increase seeds for commercial market by achieving high seed yield however, seed shattering is a major constraint.

Information on seed shattering of perennial ryegrass, the stage at which it occurs and an efficient method of evaluating shattering is limited.

OBJECTIVE

AMANDA AMA AMISSAH

The study seeks to develop a high throughput system to phenotype seed shattering in perennial ryegrass

METHODODLGY

Four (4) methods of measuring seed shattering will be employed in this study

- Bagged inflorescence (Kiesbauer et al., 2023)
- Rolling on inflorescence (Tubbs & Chastain, 2023).
- Tray under plant
- Imaging (Ortiz et al., 2023)

ANALYSIS

Abscision zone of the spike will be assessed under microscope at varying growth stages of the plant.

Seed shattering methods will be analysed statistically using linear mixed effects models accounting for the block design, genotype and weather conditions in the field.

EXPECTED OUTCOME

- A high throughput protocol for phenotyping seed shattering in perennial ryegrass will be established
- Identify genotypes with low shattering traits under optimum environmental conditions.
- Development of high throughput protocol to guide breeding of high seed retention of perennial ryegrass.

AMANDA AMA AMISSAH

Automated estimation of cardiac stroke volumes from computed tomography

Using AI for Vertebral Segmentation and Fracture Detection

Andreas With Aspe

**

DTU

Segmentation framework

• Three-step model

- Fracture = deformation

Fracture detection

Eye-tracking for assessing X-rays image interpretation

Anna Anikina

UNIVERSITY OF COPENHAGEN

Purpose: Explore the potential of eye tracking data in predicting errors made by radiologists during the analysis of chest X-ray images

Input data: Features, describing the movement of the doctor's gaze while reading x-ray chest images

Model	Accuracy		
GRU Tabular + image features	0.83		
GRU Tabular features	0.82		

AMAES: Augmented Masked Autoencoder Pretraining on Public Brain MRI Data for 3D-Native Segmentation

Asbjørn Munk, DIKU

- Brain MRI
- Masked Autoencoder pretraining for 3D segmentation
- BRAINS-45K: The largest public pretraining dataset

Unify tasks in Video Segmentation

Semi-supervised Video Object Segmentation (VOS)

[Caelles CVPR17, Caelles arXiv18, Khoreva ACCV18]

Cell segmentation and cell-specific intercellular PSF detections

Volumetric Super-Resolution via Multi-Scale Transformers

Synthesis of Medical Images

• Problem:

- Medical data is sparse and data augmentation can be problematic
- Medical images are usually very big
- Solution
 - Synthesize medical images with context taken into consideration
 - \circ $\$ Utilize LDM to reduce memory footprint

DO YOU WANNA KNOW WHAT YOUR UNSUPERVISED MODEL IS LOOKING AT?

DO YOU WANNA KNOW WHAT YOUR UNSUPERVISED MODEL IS LOOKING AT?

THEN YOU NEED NEM-U

Fast, accurate and compact occlusion-based explanations for unsupervised representation learning

Finding NEM-U

COME AND CHAT TO DISCOVER IF NEM-U WORKS FOR YOU

Fast, accurate and compact occlusion-based explanations for unsupervised representation learning

Channel Attention Separable Convolution Network for Skin Lesion Segmentation

Changlu Guo

Technical University of Denmark, Kgs. Lyngby, Denmark

chagu@dtu.dk

Inspired by advanced mechanisms such as U-Net, DenseNet, Separable Convolution, Channel Attention, and Atrous Spatial Pyramid Pooling (ASPP), we propose a novel network called Channel Attention Separable Convolution Network (CASCN) for skin lesions segmentation.

Channel Attention Separable Convolution Network for Skin Lesion Segmentation

Changlu Guo

Technical University of Denmark, Kgs. Lyngby, Denmark

chagu@dtu.dk

Original Image	True Mask	UNet	Residual UNet	UNet++	MultiResUNet	CARUNet	CASCN	
*								

 Table 1. Experiments on PH2 Dataset

Models	SE(%)	SP(%)	AC(%)	DI(%)	JA(%)
U-Net [3]	94.67	93.61	94.89	92.56	86.84
Residual U-Net [4]	94.14	94.50	95.07	92.53	86.84
U-Net++ $[5]$	94.84	94.01	95.35	92.81	87.11
MultiResUNet [6]	94.88	94.87	95.92	93.56	88.48
CAR-UNet [7]	93.77	94.95	95.24	92.85	87.30
CASCN (ours)	95.79	96.21	96.45	94.61	90.18

The experimental results demonstrate that CASCN **achieves state-of-the-art performance on the PH2 dataset**.

DTU Wind

Deploying Deep Learning Model in Real World Clinical Setting: a case study in obstetric ultrasound

Thalamu

Fossa Posterior No Caliper placement possible? Symmetrical: Yes Magnification OK? No

Acceptable

we want to use it in the clinic

Angle OK? Yes (4 deg) Magnification OK? Yes

Caliper placement possible? Yes

how?

Source Matters: Source Dataset Impact on Model **Robustness in Medical Imaging**

IT UNIVERSITY OF COPENHAGEN

Nacional de San Martín

Direct Observation and Kinetic Quantification of Stochastic Protein-Protein Interactions

Emily Winther Sørensen and Nikos Hatzakis

Deep Generative Models for Characterising Atomic Structures of Nanomaterials

Accelerated Data Generation [3]

[1] L. M. Antunes, K. T. Butler, and R. Grau-Crespo. Crystal structure generation with autoregressive large language modeling, 2024.

[2] U. Friis-Jensen, F. L. Johansen, A. S. Anker, E. B. Dam, K. M. Jensen, and R. Selvan. Chili: Chemically-informed large-scale inorganic nanomaterials dataset for advancing graph machine learning, 2024.

[3] F. L. Johansen, A. S. Anker, U. Friis-Jensen, E. B. Dam, K. M. Jensen, and R. Selvan. A gpu-accelerated open-source python package for calculating powder diffraction, small-angle-, and total scattering with the debye scattering equation. *Journal of Open Source Software*, 9(94):6024, 2024.

Data Curation for Chemically-Informed Graph Datasets [2]

Autoregressive Models [1]

Optimized KiU-Net: Lightweight Convolutional Neural Network for Retinal Vessel Segmentation in Medical Images

Hazrat Bilal

OLLSCOIL NA GAILLIMHE

UNIVERSITY OF GALWAY

PARTNER INSTITUTIONS

LIMERICK

(CRT-AI, School Of Computer Science, University of Galway)

Supervised By: Dr. Malika Bendechache

HOST INSTITUTION

Centre for Research Training Training

Introduction

- Blood vessels and circulatory system
- Diseases diagnose
 - Diabetic retinopathy, Macular edema, Arteriosclerosis etc.
- Detection of Eye Diseases, main factors, and structural points
 - vessel diameter, branch angle, branch length
- Manual diagnosis is difficult, subjective, and time-consuming
- Access to medical specialists and infrastructure
- Automatic detection of retinal diseases can address the gap

Problem Statement

- Low pixel proportion
- Low contrast
- Semantic information on small-scale vessels

HOST INSTITUTION

Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Methodology and Results

Frinity College Dublin

iste na Trionóide. Baile Átha Cliat

Optimized KiU-Net .

Conv Channels of KiU-Net: [32,64,128]

Conv Channels of Optimized KiU-Net: [16,32,48,64]

HOST INSTITUTION

PARTNER INSTITUTIONS OLLSCOIL NA GAILLIMHE

UNIVERSITY OF GALWAY

DCU

Table: Result of the proposed model on GlaS Dataset

Method	F1 Score	loU	
U-Net	77.78	65.34	
Res-UNet	78.83	65.95	
Deeplabv3+	76.01	67.04	
MedT	81.02	69.61	
HistoSeg	98.07	76.73	C
Optimized KiU-Net (ours)	82.21	71.03	

5	Table: Result of the proposed model on RITE Dataset										
	Method	F1 Score	loU	Parameters							
4	Seg-Net	52.23	39.14	12.5M							
1	U-Net	55.24	31.11	3.1M							
2	KiU-Net	75.17	60.37	0.29M							
5	Optimized KiU-Net (ours)	79.80	66.30	0.18M							
3		9.00 C									

Acknowledgements

This work was conducted with the financial support of the Science Foundation Ireland Centre for Research Training in Artificial Intelligence under Grant No. 18/CRT/6223.

rinity College Dublin

Thank You!

OLLSCOIL NA GAILLIMHE

UNIVERSITY OF GALWAY

DCU

PARTNER INSTITUTIONS

UNIVERSITY OF

HOST INSTITUTION

Predicting urban tree cover from incomplete point labels and limited background information

Hui Zhang, Ankit Kariryaa, Venkanna Babu Guthula, Christian Igel, Stefan Oehmcke University of Copenhagen

UNIVERSITY OF COPENHAGEN

Learning from incomplete & sparse labels - mask & objectness

$\mathcal{L} = \mathcal{L}^{\sup}(f(x) \odot \boldsymbol{m}, \boldsymbol{y} \odot \boldsymbol{m})$

 $\mathcal{L}^{\text{obj}}(f(x) \odot \boldsymbol{r}, \boldsymbol{o} \odot \boldsymbol{r}, \hat{\boldsymbol{r}} \odot \boldsymbol{r})$ = $-\frac{1}{|\boldsymbol{o}|} \sum_{i=1}^{|\boldsymbol{o}|} \text{BCE}(f(x) \odot \hat{\boldsymbol{r}}_{i}, \boldsymbol{o} \odot \hat{\boldsymbol{r}}_{i})$

15. Shijie Li, Neel Dey, Katharina Bermond, Leon von der Emde, Christine A. Curcio, Thomas Ach, and Guido Gerig. 2021. Point-Supervised Segmentation Of Microscopy Images And Volumes Via Objectness Regularization. In International Symposium on Biomedical Imaging (ISBI). IEEE, 1558–1562. https://doi.org/10.1109/ISBI48211.2021.9433963 2, 4, 5, 6, 7

Results

Name	Description	Setting	tting I			Sparse	
			IoUd	F1 _d	BAd	Recalls	BAs
baseline	Neither masking nor objectness and enlarging positive labels to a circle with 1.5 m radius.	$\beta = 0$ $m = 1^{w \times h}$ $y = m^{\text{disk}}$	-	-	-	0.0005	0.5002
Obj	Reimplementation of [15].	$\beta = 1$ $m = y \cup b$ $\hat{r} = 1^{w \times h}$	0.1191	0.5479	0.5575	0.5908	0.7844
Mask (ours)	Only supervised loss and mask- ing out unknown areas.	$\beta = 0$ $\boldsymbol{m} = \boldsymbol{y} \cup (\boldsymbol{m}^{\text{OSM}} \setminus \boldsymbol{m}^{\text{disk}})$	0.4839	0.7551	0.8119	0.8994	0.8205
MaskObj (ours)	As [15] but restricting object- ness loss to 1.5 m radius around points.	$\beta = 1$ $\hat{r} = m^{\text{disk}}$ $m = y \cup (m^{\text{OSM}} \setminus m^{\text{disk}})$	0.3364	0.7289	0.6978	0.7771	0.8399
MaskObjThresh (ours)	As MaskObj but removing objectness smaller than the specified threshold ($t = 0.2$).	$\beta = 1$ $\hat{r} = m^{\text{disk}} \cap (o \ge t)$ $m = y \cup (m^{\text{OSM}} \setminus m^{\text{disk}})$	0.4805	0.7660	0.7870	0.8345	0.8135

Unsupervised Detection of Fetal Brain Anomalies using Denoising Diffusion Models

Markus Ditlev Sjøgren Olsen¹, Jakob Ambsdorf^{2,4}, Manxi Lin¹, Caroline Taksøe-Vester³, Morten Bo Søndergaard Svendsen¹, Anders Nymark Christensen¹, Mads Nielsen^{2,4}, Martin Grønnebæk Tolsgaard³, Aasa Feragen^{1,4}, Paraskevas Pegios^{1,4} ¹Technical University of Denmark, ²University of Copenhagen, ³CAMES Rigshospitalet, ⁴Pioneer Centre for Al

Universal Image Segmentation with Diffusion Models

- Segment any image, either completely agnostically, or conditioned on
 - Number of classes, Label names
 - Bounding boxes
 - Foreground/background points
 - Instance/semantic
 - Related images (e.g. few shot)
- Talk with me about
 - Diffusion, Generative models
 - Anything really
 - Programming

Deep Learning Based Localization and Characterization of White Matter Lesions

Julia Machnio¹, Mads Nielsen¹, Mostafa Mehdipour Ghazi¹ ¹Pioneer Centre for AI, Department of Computer Science, University of Copenhagen, Denmark

Al-Driven Outlier Detection of Human Vertebrae from CT Scans

Detecting vertebral fractures using AI

- Testing different neural networks with autoencoder architecture.
- CT scans of Lumbar 1 vertebra.
- Optimal convolutional U-Net model.
- Trained on healthy vertebra images.
- Investigate performance with unseen data.

Figure 3: Overview of some of the evaluations performed in the project.

DANISH RESEARCH CENTRE FOR MAGNETIC RESONANCE

Diffusion-weighted MRS

- B. Diffusion-weighted imaging (dMRI): microstructure at
- high spatial resolution,
- low compartmental and cell-type specificity

- · low spatial resolution,
- · high compartmental and cell type specificity

Ligneul, Clémence, et al. "Diffusion-weighted MR spectroscopy: Consensus, recommendations, and resources from acquisition to modeling." *Magnetic resonance in medicine* 91.3 (2024): 860-885.

Sensitivity to motion

Perfusion Defect in Cardiovascular

Perfusion imaging- short axis CMRI

Short axis images

Perfusion defect

Problem Definition

LLICLUILI		UNIVERSITY OF LEICESTER
-----------	--	----------------------------

NIHR Leicester Biomedical Research Centre

Improving Cardiovascular Diagnostics with AI through Analyzing MRI Scans for Coronary Artery Disease

¹ Mahsa Pourhossein Kalashami, ² Dr Ranjit Arnold, ¹ Dr Dimitrios Statharas

¹ University of Leicester, Engineering Department ² University of Leicester, Cardiovascular Department

1 Abstract

Artificial intelligence (AI) enhances cardiologists' analysis of heart MRI scans, focusing on perfusion imaging to detect coronary artery disease (CAD). Utilizing a unique dataset from Gienfield Hospital in Leicester, which includes patients from diverse ethnic backgrounds, the AI nodel distinguishes genuine perfusion defects from afflatest caused by the scanning process. This aids in accurate dignoses without invasive tests like angiography, reducing patient discomfort. By combining cardiologists' knowledge with AI and deep learning capabilities in data analysis, the approach promises quicker, more precise diagnoses, improving efficiency, reducing costs, and enhancing healthcare inclusivity.

4 Methodology

2 Introduction

techniques

3 Dataset

Datase

Тур

Size

Task

Slice 1(Rase)

0 0 0 - 0

methods to enhance patient outcomes.

and mislead diagnostics.

Despite advancements, the accuracy of Cardiac Magnetic

Resonance Imaging (CMRI) is often compromised by Dark Rim

Artifacts (DRAs), which can mimic genuine perfusion defects

This research aims to develop a robust Al-driven classification

model capable of distinguishing true cardiac abnormalities from DRAs, using advanced computer vision and deep learning

> 1. Dataset Description Dataset details

Collected from Glenfield hospital for this resear

MRI Perfusion scans

298 patients, 894 video records from 3 short-axis slices of the heart

Detection of DRAs vs genuine perfusion defec

e recordings are in video format. Video record from three slices of her Rest and stress perfusion scans of people who are suspected to have

The data are labeled as Normal, genuine perfusion defect and DRA

Patient

Slice 20Mid

2 3

e e e - e

3. General overview of D

Cardiovascular diseases are the leading cause of global mortality, demanding innovations in non-invasive diagnostic

In the methodology section of this project, a two-part approach is employed, comprising data preprocessing and model development

Initially, heart MRI videos are converted into a series of images through frame extraction. This is followed by dimension reduction, where extraneous frames are selectively removed.

The images are then cropped around the Image Pre-process region of interest (ROI) and resized to standardize input sizes.

Extracting 60 frames For model development, a 3D Convolutional Neural Network (3D-CNN) is utilized to capture both spatial Deleting First 18 Frames and temporal correlations, which are crucial for monitoring changes in blood flow within the heart's left ventricle. ROI Detection (Cropping around Center

5 Results

Model Evaluation: A 3D-CNN classification model was evaluated on 418 cardiac MRI scans, aimed at distinguishing genuine perfusion defects (GPD) from Dark Rim Artifacts (DRA).

2. Classification I

Classes	Precision	Recall	F1-score	Support
Class 0 (GPD)	0.61	0.70	0.65	69
Class 1 (DRA)	0.46	0.37	0.41	49

6 Conclusion & Future work

 The current model identifies GPDs with good reliability but there is room for improvement.
There is a necessity for improved detection algorithms for classification and feature engineering. Additionally, the pre-processing stage needs to be enhanced in order to improve the outputs of the model. · Given the limited data availability some Data Augmentation methods need to be applied to improve the performance of the

Slice 3(Ap

1

0.0.0 - 0.

MitochondrialMotilityandSubcellularLocalisationinPancreatic Alpha Cells

Poster Pitch

Maia H. Ekstrand <u>maia.ekstrand@bio.ku.dk</u> Ph.D. fellow in Knudsen Lab Section for Cell Biology and Physiology

Mitochondrial Motility and Subcellular Localisation in Pancreatic

Aim of Study:

How are mitochondrial motility and localisation regulated in alpha cells? How do mitochondrial motility and localisation impact glucagon secretion?

Graphical abstract

Incorporating Clinical Guidelines through Adapting Multi-modal Large Language Model for Prostate Cancer PI-RADS Scoring

Tiantian Zhang*, Manxi Lin*, Hongda Guo, Xiaofan Zhang, Ka Fung Peter Chiu, Aasa Feragen, Qi Dou

Motivation

- Improving Diagnostic Accuracy: Current deep learning methods for PI-RADS scoring often neglect the PI-RADS Clinical Guideline (PICG), which radiologists use, potentially compromising the accuracy of prostate cancer diagnosis through MRI.
- Incorporating Clinical Expertise: There is a need to seamlessly integrate clinical guidelines like PICG into AI models to ensure that the nuanced information used by radiologists is effectively captured, thus enhancing model trustworthiness and reducing subjective biases.
- Minimizing Model Modifications: Developing a method that incorporates PICG into existing scoring networks without requiring extensive architectural changes or additional annotations, to streamline the integration process and improve usability in clinical settings.

Experimental Results

Performance of different methods on the private test set.
Results are reported with the average and standard deviation

over three independent runs.

Model	Accuracy % ↑	$\mathrm{MSE}\downarrow$	$\mathrm{MAE}\downarrow$	Precision%↑	$\operatorname{Recall}^{\uparrow}$	$F1\%\uparrow$
VGG [23]	$31.6{\pm}1.4$	$1.38{\pm}0.2$	$0.92{\pm}0.5$	17.4 ± 1.5	$22.6 {\pm} 0.8$	$17.4{\pm}1.8$
VGG [23]+PICG (ours)	$38.6 \pm 2.1 (+7.0)$	$1.09{\pm}0.1$	$0.77{\pm}0.0$	$21.1 {\pm} 0.3$	$22.9{\pm}1.2$	$21.0{\pm}0.6$
Kang et al., [11]	30.0 ± 4.0	$1.43{\pm}0.3$	$0.93{\pm}0.1$	13.2 ± 2.6	20.1 ± 2.5	$14.5{\pm}2.0$
Kang et al., [11]+PICG (ours)	$36.4{\pm}1.0~(+6.4)$	$1.25{\pm}0.0$	$0.83{\pm}0.0$	16.1 ± 3.6	$20.9 {\pm} 1.8$	$15.9{\pm}2.3$
Sanford et al., [21]	$30.4{\pm}0.4$	$1.61{\pm}0.2$	$0.97{\pm}0.1$	17.7 ± 1.3	22.1 ± 1.7	$16.1{\pm}1.1$
Sanford et al., [21]+PICG (ours)	$35.7 \pm 0.9 (+5.3)$	$1.38{\pm}0.2$	$0.87{\pm}0.1$	18.4 ± 1.2	22.0 ± 0.5	$17.4{\pm}1.5$
Yu et al., [27]	$33.8 {\pm} 0.6$	$1.22{\pm}0.2$	$0.83{\pm}0.1$	18.2 ± 6.1	21.8 ± 2.3	$13.4{\pm}3.1$
Yu et al., [27]+PICG (ours)	$38.6 \pm 0.4 (+4.8)$	$1.17{\pm}0.1$	$0.79{\pm}0.0$	$20.4 {\pm} 0.6$	$23.8{\pm}1.4$	$20.6{\pm}0.8$

• Model performance with different α and the effect of two-stage

fine-tuning on model performance.

Loss weight	lpha=0.2	Loss w	eight α	= 0.4	Loss w	eight α	= 0.6	Model	w/o PICG	with PICG	Baseline MLLM
Acc.% \uparrow MS	E↓ MAE↓	Acc.% ↑	MSE↓	MAE↓	Acc.% ↑	MSE↓	MAE↓	Kang et al. [11] Sanford et al. [21]	33.8%	37.5%	33.1%
36.2 1.2	4 0.83	38.6	1.26	0.82	32.4	1.70	0.99	Yu et al. [27]	34.5%	38.9%	35.8%

Prediction of Breast Cancer Risk in Women Aged 40-50 Using BERT-Based Model

Maria Elkjær Montgomery¹, Mads Nielsen¹

¹Pioneer Center for AI, Department of Computer Science, University of Copenhagen, Denmark

Implicit Neural Representations for Registration of Left Ventricle Myocardium During a Cardiac Cycle

Detecting Anomales avector

Mia Siemon

Industrial PhD

Can we simplify it? What is the minimum?

Could it be the analysis of mere *bounding boxes*?

Can we simplify it? What is the minimum?

How about object *silhouettes*?

Can we simplify it? What is the minimum?

4%

Detection Accuracy Compared to Prior Art

> Can we simplify it? What is the minimum?

Detection Accuracy Compared to Prior Art

Model Training Time

Can we simplify it? What is the minimum?

Yes, we can. Bounding Boxes and Silhouettes.

Can we simplify it? What is the minimum?

Policy-Space Diffusion for Physics based Character Animation

Michele Rocca, PhD student Supervised by: Kenny Erleben, Sune Darkner, and Sheldon Andrews

DIKU-DTU-AAU Summer School, 2024

ÉCOLE DE ÉCCHE DE ÉCCHNOLOGIE Supérieure Université du Québec

Dance Motion Policy

On trained character

On unseen characters

Regularized training:

Policy Diffusion Model:

similar motions->similar policies

Discrete set of trained policies -> Continuous sampling

l ner	\boldsymbol{w}_{1}^{T} \boldsymbol{w}_{1}^{T}	Diffusion b_2^T	Training w_2^T	$b_{\!\mu}^{\scriptscriptstyle T} oldsymbol{w}_{\!\mu}^{\scriptscriptstyle T}$	С	ΤΘ
nsforr f	w_1^{T-1} w_1^{T-1}	b_{2}^{T-1}	w_2^{T-1}	$b_{\!\mu}^{{\scriptscriptstyle T}\!-\! \imath} \! arkappa_{\!\mu}^{{\scriptscriptstyle T}\!-\! \imath}$	₽	T-1
n Tra	: T-i T-i	:	: T-i	: : 1 T-i •T-i	Û	:
oiffusic	w_1 w_1	b_2^2	w_2^2 :	bµ ₩µ * •	Û	<i>T-i</i> :
	\hat{b}_1 \hat{w}_1	\widehat{b}_2	\widehat{W}_2	$\widehat{b}_{\mu} \ \widehat{w}_{\mu}$	С	0

Counterfactuals is all about "What if..." Fx. What if Harry Potter went to Slytherin?

Shortcut learning happens when there's **spurious correlation** Fx. Scans from patients are more likely with support devices ⁹⁹

Fast Diffusion-Based Counterfactuals for Shortcut Removal and Generation

Nina Weng*, Paraskevas Pegios*, Eike Petersen, Aasa Feragen, Siavash Bigdeli Technical University of Denmark, Denmark * Equal contribution

Structural analysis of mozzarella cheese

Stochastic subset selection in partially Bayesian transformers

What can we do with partially stochastic models?

• We can achieve fully (approximate) Bayesian behaviour from only partially stochastic models if...

- We select the weights (somewhat) intelligently
- We include the prior variance as a hyperparameter for optimization

Search in free-text radiology report database using large language model cooperation

Reza Karimzadeh, Bulat Ibragimov

UNIVERSITY OF COPENHAGEN

5.0

4.5

4.0

3.5

2.5 2.0

1.5

1.0

3.0 SCOTE

Search in free-text radiology report database using large language models

- Itemization: Llama 2, Orca 2, Yi chat models
- Find the closest embedding of items for the query

Itemization Module

Embedding

1. Tumor in the caput pancreas with an estimated size of X cm

Llama output

Synthesis of Geometric Models for Axons

Ruiqi Cui, Sidsel Winther, Tim B. Dyrby, Andreas Bærentzen

Pre-training LLMs require big GPU clusters

Pre-training a **LLaMA 13B** model with Adam and a *batch size of one* requires over **100 GB** of memory.

Pre-training LLMs require big GPU clusters

Pre-training a **LLaMA 13B** model with Adam and a *batch size of one* requires over **100 GB** of memory.

LoQT: Low Rank Adapters for Quantized Pre-Training

 Pre-training from scratch while only optimizing a single low-rank factor per layer.

LoQT: Low Rank Adapters for Quantized Pre-Training

- Pre-training from scratch while only optimizing a single low-rank factor per layer.
- Keep most weights in 4-bit precision.
- Match regular FP16 training

LoQT: Low Rank Adapters for Quantized Pre-Training

Sebastian Loeschcke*, Mads Toftrup*, Michael J. Kastoryano, Serge Belongie, and Vésteinn Snæbjarnarson

SUPSI

Protoporphyrin fluorescence quantification in glioblastoma tumor phantoms

Marinelli S.¹, Oberli C.¹, Mazevet M.¹, Kaelin A.², Marchi F.², Cardia A.², Reinert M.³, Allegri D.¹, Gardenghi R.¹

¹SUPSI-Department of Innovative Technologies, Institute of Systems and Applied Electronics, ²Neurocenter-Instituto di Neuroscienze cliniche della svizzera italiana, ³USI-Università della svizzera italiana

Sebastiano Marinelli, Eng.

31 luglio 2024

SUPSI Titolo principale della presentazione

Content

• Context: Protoporphyrin (PpIX), 5-ALA metabolite, is used in fluorescence-guided surgery for tumours resection.

https://neurochirurgie.insel.ch/en/diseases-specialities/special-techniques/5-ala-fluorescence

- Aim: Need for quantification to reduce inter-observer variability.
- How:
 - Development of two models.

- Development of a quantification technique with calibration curve
- Comparison in two systems (Orbeye from Olympus and FLUO custom made setup from SUPSI).
- Results:
 - Accurate quantification in gel using calibration curve
 - Relative quantification in small brain model.

3D Whole-heart fibrosis: Can we quantify it?

Perivascular fibrosis

Interstitial fibrosis

osis

Collagen in a ReninAAV UNx db/db mouse
3D Whole-heart fibrosis: Can we quantify it?

High throughput cardiac analysis platform that opens the door to testing new therapeutics.

If we want models that can **enhance the** resolution of medical CT images, we need real data and better performance metrics.

Paper title: Superresolution of real-world multiscale bone CT verified with clinical bone measures

FACTS dataset ur Archaeological CT Superresolution)

- 13 proximal femurs Publicly available
- 2 CT resolutions

Validating YOLO v8 and SAM Foundation Models for Robust Point-of-Care Ultrasound Segmentation

Sumit Pandey Phd Fellow

Supervisor: Prof. Erik B Dam

Methodology

- Medical image segmentation performed using YOLOv 8 with SAM and HQ SAM models and comparing with variations of UNets
- All six models were trained on 510 images and corresponding masks from 175 patients and tested on an independent cohort 375 patients
- Analysis revealed that the YOLOv8 model outperformed both Unets models and YOLOv8 + SAM.

Result

Aorta segmentation and Detection using YOLOv8 😃

This software generates the segementation mask for Aorta for the Point of Care Ultrasound (POCUS) images

Please click here to check the web-app

FreqRISE: Explaining time series using frequency masking

- Time series data is ubiquitous in several critical domains
 - Health, finance, climate monitoring
- Explainability -> salient information in latent domains
- Can we provide explanations in dual domains where salient information is sparse?

FreqRISE: Explaining time series using frequency masking

Quad mesh generation using RL

Figure by Alba Reinders Sánchez, Master thesis Project at DTU, 2024 Figure by Pandey et. al., "Face Extrusion Quad Meshes", 2022

DTU

=

Using Deep Generative Models for Atomic Structure Prediction of Metal Oxide Nanoparticles from X-ray

Nacala-Roof-Material: Drone Imagery for Roof Detection, Classification, and Segmentation to Support Mosquito-borne Disease Risk Assessment

Venkanna Babu Guthula, Stefan Oehmcke, Remigio Chilaule, Hui Zhang, Nico Lang, Ankit Kariryaa, Johan Mottelson, Christian Igel

novo nordisk foundation

Data

Figure-1: Nacala-Roof-Material data

Results

	$\mathcal{D}_{ ext{test}}$						\mathcal{D}_{ext}			
	pixel level			object level			pixel level		object level	
Model Name	IoU	mIoU ³	mIoU ⁵	AP ₅₀	mAP_{50}^3	mAP_{50}^5	IoU	mIoU ³	AP ₅₀	mAP_{50}^3
YOLOv8	$\begin{array}{c} \textbf{0.866} \\ \pm \text{ 0.012} \end{array}$	$\begin{array}{c} 0.713 \\ \pm \ 0.019 \end{array}$	$\begin{array}{c} 0.568 \\ \pm \ 0.015 \end{array}$	0.941 ± 0.003	$\begin{array}{r} \textbf{0.815} \\ \pm \text{ 0.011} \end{array}$	$\begin{array}{c} \textbf{0.698} \\ \pm \text{ 0.018} \end{array}$	$\begin{array}{c} 0.896 \\ \pm \ 0.002 \end{array}$	0.761 ± 0.006	0.963 ± 0.005	$\begin{array}{c} \textbf{0.846} \\ \pm \text{ 0.008} \end{array}$
DINOv2	$\begin{array}{c} 0.833 \\ \pm \ 0.002 \end{array}$	$\begin{array}{c} 0.755 \\ \pm \ 0.004 \end{array}$	$\begin{array}{c} 0.562 \\ \pm \ 0.003 \end{array}$	$\begin{array}{c} 0.882 \\ \pm \ 0.004 \end{array}$	$\begin{array}{c} 0.789 \\ \pm \ 0.006 \end{array}$	$\begin{array}{c} 0.683 \\ \pm \ 0.008 \end{array}$	$\begin{array}{c} 0.905 \\ \pm 0.000 \end{array}$	$\begin{array}{c} 0.747 \\ \pm \ 0.011 \end{array}$	$\begin{array}{c} 0.919 \\ \pm \ 0.005 \end{array}$	$\begin{array}{c} \textbf{0.806} \\ \pm \text{ 0.008} \end{array}$
DINOv2 _{DOW}	$\begin{array}{c} 0.884 \\ \pm 0.001 \end{array}$	$\begin{array}{c} 0.763 \\ \pm \ 0.002 \end{array}$	$\begin{array}{c} 0.565 \\ \pm \ 0.004 \end{array}$	$\begin{array}{c} 0.930 \\ \pm \ 0.005 \end{array}$	$\begin{array}{c}\textbf{0.836}\\ \pm \text{ 0.002}\end{array}$	$\begin{array}{c} 0.725 \\ \pm \ 0.004 \end{array}$	$\begin{array}{c} 0.905 \\ \pm \ 0.001 \end{array}$	$\begin{array}{c} 0.852 \\ \pm \ 0.007 \end{array}$	$\begin{array}{c} 0.956 \\ \pm \ 0.001 \end{array}$	$\begin{array}{c} 0.852 \\ \pm \ 0.007 \end{array}$
U-Net	0.895 ± 0.003	$\begin{array}{c} 0.757 \\ \pm \ 0.024 \end{array}$	$\begin{array}{c} 0.570 \\ \pm \ 0.016 \end{array}$	$\begin{array}{c} 0.910 \\ \pm \ 0.005 \end{array}$	$\begin{array}{c} \textbf{0.810} \\ \pm \text{ 0.008} \end{array}$	$\begin{array}{c} \textbf{0.688} \\ \pm \text{ 0.014} \end{array}$	$\begin{array}{c} 0.909 \\ \pm 0.001 \end{array}$	$\begin{array}{c} 0.748 \\ \pm \ 0.007 \end{array}$	$\begin{array}{c} 0.929 \\ \pm \ 0.000 \end{array}$	$\begin{array}{c} 0.787 \\ \pm \ 0.011 \end{array}$
U-Net _{DOW}	$\begin{array}{c} \textbf{0.895} \\ \pm \ 0.002 \end{array}$	$\begin{array}{c} 0.775 \\ \pm \ 0.013 \end{array}$	$\begin{array}{c} 0.577 \\ \pm \ 0.009 \end{array}$	$\begin{array}{c} 0.935 \\ \pm \ 0.001 \end{array}$	$\begin{array}{c} 0.836 \\ \pm \ 0.005 \end{array}$	$\begin{array}{c} \textbf{0.730} \\ \pm \text{ 0.011} \end{array}$	$\begin{array}{c} \textbf{0.911} \\ \pm \ \textbf{0.002} \end{array}$	$\begin{array}{c} 0.764 \\ \pm \ 0.006 \end{array}$	$\begin{array}{c} 0.947 \\ \pm \ 0.004 \end{array}$	$\begin{array}{c} 0.812 \\ \pm 0.008 \end{array}$
YOLOv8 _{Multi}	$\begin{array}{c} 0.824 \\ \pm \ 0.023 \end{array}$	$\begin{array}{c} 0.708 \\ \pm \ 0.010 \end{array}$	$\begin{array}{c} 0.550 \\ \pm \ 0.017 \end{array}$	$\begin{array}{c} 0.910 \\ \pm \ 0.005 \end{array}$	$\begin{array}{c} 0.816 \\ \pm 0.009 \end{array}$	$\begin{array}{c} 0.597 \\ \pm \ 0.007 \end{array}$	$\begin{array}{c} 0.885 \\ \pm 0.002 \end{array}$	$\begin{array}{c} 0.785 \\ \pm 0.006 \end{array}$	$\begin{array}{c} 0.948 \\ \pm 0.003 \end{array}$	$\begin{array}{c} 0.849 \\ \pm \ 0.015 \end{array}$
DINOv2 _{Multi}	$\begin{array}{c} \textbf{0.880} \\ \pm \ \textbf{0.002} \end{array}$	$\begin{array}{c} 0.774 \\ \pm \ 0.004 \end{array}$	$\begin{array}{c} \textbf{0.699} \\ \pm \ \textbf{0.012} \end{array}$	$\begin{array}{c} \textbf{0.899} \\ \pm \ \textbf{0.003} \end{array}$	$\begin{array}{c} \textbf{0.820} \\ \pm \text{ 0.010} \end{array}$	$\begin{array}{c} 0.689 \\ \pm \ 0.025 \end{array}$	$\begin{array}{c} 0.899 \\ \pm \ 0.002 \end{array}$	$\begin{array}{r} 0.818 \\ \pm 0.005 \end{array}$	$\begin{array}{r} 0.946 \\ \pm 0.001 \end{array}$	0.880 ± 0.011
DINOv2 _{DOW-Multi}	$\begin{array}{r} 0.885 \\ \pm 0.001 \end{array}$	0.786 ± 0.006	0.734 ± 0.006	0.918 ± 0.003	$\begin{array}{r} \textbf{0.824} \\ \pm \text{ 0.011} \end{array}$	0.702 ± 0.013	$\begin{array}{c} 0.902 \\ \pm 0.001 \end{array}$	0.819 ± 0.006	$\begin{array}{r} 0.950 \\ \pm 0.005 \end{array}$	$\begin{array}{r} \textbf{0.875} \\ \pm \ \textbf{0.010} \end{array}$
U-Net _{Multi}	$\begin{array}{c} 0.879 \\ \pm \ 0.012 \end{array}$	$\begin{array}{c} 0.783 \\ \pm \ 0.010 \end{array}$	$\begin{array}{c} 0.634 \\ \pm 0.024 \end{array}$	$\begin{array}{c} 0.924 \\ \pm \ 0.004 \end{array}$	0.850 ± 0.011	$\begin{array}{c} 0.716 \\ \pm \ 0.018 \end{array}$	$\begin{array}{c} 0.903 \\ \pm \ 0.002 \end{array}$	$\begin{array}{c} 0.805 \\ \pm \ 0.020 \end{array}$	$\begin{array}{r} 0.943 \\ \pm 0.010 \end{array}$	$\begin{array}{c} 0.844 \\ \pm \ 0.039 \end{array}$
U-Net _{DOW-Multi}	$\begin{array}{c} 0.892 \\ \pm \ 0.001 \end{array}$	$\begin{array}{c} 0.777 \\ \pm \ 0.012 \end{array}$	$\begin{array}{c} 0.672 \\ \pm \ 0.042 \end{array}$	$\begin{array}{c} 0.928 \\ \pm \ 0.002 \end{array}$	$\begin{array}{c} 0.829 \\ \pm \ 0.011 \end{array}$	$\begin{array}{c} 0.671 \\ \pm \ 0.022 \end{array}$	$\begin{array}{c} 0.904 \\ \pm \ 0.002 \end{array}$	$\begin{array}{c} 0.794 \\ \pm \ 0.014 \end{array}$	$\begin{array}{c} 0.942 \\ \pm \ 0.005 \end{array}$	$\begin{array}{c} \textbf{0.812} \\ \pm \ \textbf{0.021} \end{array}$

Masked Autoencoders for Hyperspectral Imaging

Combining Physics and Deep Learning: A New Framework for Image Denoising

Yogita Yogita|Summer school on biomedical image analysis 12 08 2024

Combining Physics and Deep Learning: A New Framework for Image Denoising

Ipht

Yogita Yogita|Summer school on biomedical image

Fetal Ultrasound Image Segmentation for Measuring Biometric Parameters Using Multi-Task Deep Learning

Zahra Sobhaninia¹, Shima Rafiei², Ali Emami³, Nader Karimi³, Kayvan Najarian⁴, Shadrokh Samavi⁴, S.M.Reza Soroushmehr⁴

1. Pioneer Center for AI, Department of Computer Science, University of Copenhagen, Denmark

- 2. Department of Computer Science, McMaster university, Canada
- 3. Department of Computer Engineering, Isfahan University of Technology, Iran
- 4. Electrical and Computer Engineering, Seattle University, USA

